Background: The efficient nuclear delivery of plasmid DNA (pDNA) is essential for the development of a promising non-viral gene vector. In an attempt to achieve nuclear delivery, NLS-mu, a novel pDNA condenser, was prepared. This consists of mu, a highly potent polypeptide for condensing the pDNA, and a SV40 T antigen-derived nuclear localization signal (NLS(SV40)).

Methods: The utility of NLS-mu was assessed in terms of green fluorescent protein (GFP) expression after cytoplasmic and nuclear microinjection of GFP-encoding pDNA along with the transfection, and compared with mu and poly-L-lysine (PLL). Trans-gene expression after cytoplasmic microinjection was affected by the efficiencies of nuclear transfer and following intra-nuclear transcription. To evaluate the nuclear transfer process separately, we introduced a parameter, a nuclear transfer score (NT score), which was calculated as the trans-gene expression after cytoplasmic microinjection divided by that after nuclear microinjection.

Results: As expected, the rank order of trans-gene expression after the transfection and cytoplasmic microinjection was NLS-mu > mu > PLL. However, the calculated NT scores were unexpectedly ranked as mu = NLS-mu > PLL, suggesting that mu, and not NLS(SV40), is responsible for the nuclear delivery of pDNA. In addition, confocal images of rhodamine-labeled pDNA indicated that pDNA condensed with mu and NLS-mu was delivered as a condensed form. In comparing the nuclear transcription, the rank order of trans-gene expression after nuclear microinjection was PLL = NLS-mu > mu, suggesting that intra-nuclear transcription is inhibited by efficient condensation by mu, and is avoided by the attachment of NLS(SV40).

Conclusions: Collectively, NLS-mu, which consists of chimeric functions, is an excellent DNA condenser, and the process is based on mu-derived nuclear transfer and NLS(SV40)-derived efficient intra-nuclear transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.839DOI Listing

Publication Analysis

Top Keywords

nuclear delivery
16
intra-nuclear transcription
16
trans-gene expression
16
nuclear transfer
16
nuclear
13
nuclear microinjection
12
expression cytoplasmic
12
cytoplasmic microinjection
12
plasmid dna
8
cytoplasmic nuclear
8

Similar Publications

Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. Here we develop a drug formulation in which a lipid-based nanoparticle (LBNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5) targeting peptide.

View Article and Find Full Text PDF

Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure.

View Article and Find Full Text PDF

Cationic Hydroxyethyl Cellulose Nanocomplexes and RANK siRNA/Zoledronate Co-Delivery Systems for Osteoclast Inhibition.

Pharmaceutics

December 2024

Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.

Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.

View Article and Find Full Text PDF

Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).

Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.

View Article and Find Full Text PDF

A Repurposed Drug Selection Pipeline to Identify CNS-Penetrant Drug Candidates for Glioblastoma.

Pharmaceuticals (Basel)

December 2024

Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.

Background: Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!