Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are closely involved in the mechanism of skeletal muscle ischemia/reperfusion (I/R) injury. This study was designed to determine the effects of inducible nitric oxide synthase (iNOS) inhibitor 1400 W on the reperfused cremaster muscle in extracellular super-oxide dismutase knockout (EC-SOD(-/-)) mice. The muscle was exposed to 4.5 h of ischemia, followed by 90 min of reperfusion. Mice received either 3 mg/kg of 1400 W or the same amount of phosphate-buffered saline (PBS, as a control) subcutaneously at 10 min before the start of reperfusion. 1400 W treatment markedly improved the recovery speed of vessel diameter and blood flow in the reperfused cremaster muscle of EC-SOD(-/-) mice compared to controls. Histological examination showed reduced edema in the interstitial space and muscle fiber, and reduced density of nitrotyrosine (a marker of total peroxi-nitrate (ONOO(-)) level) in 1400 W-treated muscles compared to controls. Our results suggest that iNOS and ONOO(-) products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS perhaps works by limiting cytotoxic ONOO(-) generation, a reaction product of nitric oxide (NO) and super-oxide anion (O(2) (-)). Thus, inhibition of iNOS appears to be a treatment strategy for reducing clinical I/R injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/micr.20175 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Pediatric Surgery, Faculty of Medicine, Gazi University, Yenimahalle, Ankara, Turkey.
Background: Intestinal ischemia/reperfusion (I/R) injury can occur in a wide variety of diseases and surgeries. If necessary, the blood flow should be restored, including re-anastomosis by removing the intestines with impaired circulation. In this process, anastomotic strength is as important as inflammatory responses and oxidative stress.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Hepatobiliary Surgery, The First People's Hospital of Zhaoqing, Zhaoqing City, Guangdong Province, People's Republic of China.
Background: Myocardial ischemia/reperfusion (I/R) injury significantly impacts the recovery of ischemic heart disease patients. Non-coding RNAs, including miRNAs, have been increasingly recognized for their roles in regulating cardiomyocyte responses to hypoxia/reoxygenation (H/R) injury. miR-181c-5p, in particular, has been implicated in inflammatory and apoptotic processes, suggesting its potential involvement in exacerbating cellular damage.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.
Arrhythmia is a common and serious global health problem, contributing to cardiovascular morbidity and mortality. The cardiac muscle is susceptible to ischemia-reperfusion (I/R) injury, which can lead to fatal arrhythmias during open-heart surgery. We investigated the potential prophylactic effect of angiotensin 1-7 (Ang 1-7) using an in vivo rat model of I/R injury and examined the underlying mechanisms.
View Article and Find Full Text PDFCell Signal
January 2025
Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China. Electronic address:
Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.
Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.
Steroids
January 2025
Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China. Electronic address:
Due to the difference of estrogen levels in different phases of estrous cycle, it is necessary to exclude the influence of endogenous estrogen when studying the cardiovascular effects of estrogen and its analogues. In this study, the ischemia/reperfusion (I/R) injury of isolated heart were investigated in female rats during different phases of estrous cycle with male rats as comparison. The results indicated that the estrogen content in blood of rats during metestrus and diestrus (MD) was lower than those during proestrus and estrous (PE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!