AI Article Synopsis

  • IL-6 levels are linked to high blood pressure and can be stimulated by ANG II, prompting this study to explore IL-6's role in hypertension related to ANG II and a high-salt diet.
  • Male mice were monitored for blood pressure, heart rate, sodium balance, and urinary albumin, revealing distinct hypertension responses between wild-type and IL-6 knockout mice when administered ANG II.
  • The results showed that IL-6 significantly influences ANG II-induced hypertension, as evidenced by a marked difference in blood pressure increases and albumin excretion between the two groups, indicating an IL-6 dependent mechanism not tied to kidney injury.

Article Abstract

Plasma levels of IL-6 correlate with high blood pressure under many circumstances, and ANG II has been shown to stimulate IL-6 production from various cell types. This study tested the role of IL-6 in mediating the hypertension caused by high-dose ANG II and a high-salt diet. Male C57BL6 and IL-6 knockout (IL-6 KO) mice were implanted with biotelemetry devices and placed in metabolic cages to measure mean arterial pressure (MAP), heart rate (HR), sodium balance, and urinary albumin excretion. Baseline MAP during the control period averaged 114 +/- 1 and 109 +/- 1 mmHg for wild-type (WT) and IL-6 KO mice, respectively, and did not change significantly when the mice were placed on a high-salt diet (HS; 4% NaCl). ANG II (90 ng/min sc) caused a rapid increase in MAP in both groups, to 141 +/- 9 and 141 +/- 4 in WT and KO mice, respectively, on day 2. MAP plateaued at this level in KO mice (134 +/- 2 mmHg on day 14 of ANG II) but began to increase further in WT mice by day 4, reaching an average of 160 +/- 4 mmHg from days 10 to 14 of ANG II. Urinary albumin excretion on day 4 of ANG II was not different between groups (9.18 +/- 4.34 and 8.53 +/- 2.85 microg/2 days for WT and KO mice). By day 14, albumin excretion was nearly fourfold greater in WT mice, but MAP dropped rapidly back to control levels in both groups when the ANG II was stopped after 14 days. Thus the approximately 30 mmHg greater ANG II hypertension in the WT mice suggests that IL-6 contributes significantly to ANG II-salt hypertension. In addition, the early separation in MAP, the albumin excretion data, and the rapid, post-ANG II recovery of MAP suggest an IL-6-dependent mechanism that is independent of renal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00708.2005DOI Listing

Publication Analysis

Top Keywords

albumin excretion
16
+/- mmhg
12
mice day
12
mice
10
ang
9
high-salt diet
8
il-6 mice
8
urinary albumin
8
+/-
8
141 +/-
8

Similar Publications

MSC-EXs inhibits uranium nephrotoxicity by competitively binding key proteins and inhibiting ROS production.

Ecotoxicol Environ Saf

January 2025

Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China. Electronic address:

Uranium poisoning, particularly from exposure to Depleted Uranium (DU), occurs when uranyl ions enter the bloodstream and bind primarily to transferrin, osteopontin, and albumin before entering cells via corresponding receptors on renal tubular membranes, leading to cellular damage. Uranium poisoning remains a significant clinical challenge, with no ideal treatment currently available. In this study, we investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cell exosomes (MSC-EXs) in mice exposed to DU.

View Article and Find Full Text PDF

A 37-year-old man presented with symptoms of polyuria and weight loss over the past year. Initial laboratory examination showed elevated blood glucose level (468 mg/dL [25.9 mmol/L]; normal reference range [RR], 75-109 mg/dL [4.

View Article and Find Full Text PDF

This study tested the ISL against renal damage induced by a high-fat diet (HFD) and explored its underlying mechanisms. Adult male rats were assigned to four groups: (1) control on a standard diet (STD), (2) ISL on STD (30 mg/kg), (3) HFD, and (4) HFD + ISL (30 mg/kg). After 12 weeks of dietary intervention, ISL treatment led to significant reductions in body weight gain, visceral fat, and glucose and insulin levels in HFD-fed rats.

View Article and Find Full Text PDF

Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.

Chin J Integr Med

January 2025

Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Objective: To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).

Methods: The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.

View Article and Find Full Text PDF

Pathophysiological characterization of the ApoE mouse: A model of diabetes and atherosclerosis.

Methods

January 2025

Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain. Electronic address:

The high prevalence of type 2 diabetes and atherosclerosis makes essential the availability of in vivo experimental models that accurately replicate the pathophysiological mechanisms of these diseases. Apolipoprotein E knockout mice (ApoE) have been used in atherosclerosis studies, and the db/db mice show hyperphagia and obesity. Mice harbouring both alterations (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!