Objective: Microvascular alterations in the diabetic and hypertensive heart are likely to contribute to heart failure. In this work, myocardial blood flow and left ventricular function were measured in vivo in diabetic, hypertensive, and diabetic-hypertensive rats using MRI methods.

Methods: An 8-week-duration type 1 diabetes was induced by streptozotocin (STZ) in 8 Wistar-Kyoto (WKY) rats (STZ) and in 11 spontaneously hypertensive (SHR) rats (STZ-SHR). Fourteen WKY and 12 SHR served as control and hypertensive groups. Myocardial blood flow quantification was performed using an arterial spin-labeling MRI method. Left ventricular morphology and function were assessed during the same experiment using cine-MRI.

Results: Respective myocardial blood flow values for each group were 6.4 +/- 1.1 (WKY), 6.0 +/- 1.9 (STZ), 5.5 +/- 1.3 (SHR), and 4.3 +/- 0.9 mL. g(-1). min(-1) (STZ-SHR). Myocardial blood flow was significantly decreased in STZ-SHR rats compared with the other groups (p <.05, STZ-SHR vs. all groups). Cine-MRI showed morphological alterations in all pathological groups. No alteration of the ejection fraction was observed in the pathological groups.

Conclusion: Myocardial blood flow is altered in vivo before any sign of heart failure when rats have type 1 diabetes and hypertension simultaneously. When only one of the pathologies occurs, MBF does not vary significantly.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10739680500301607DOI Listing

Publication Analysis

Top Keywords

myocardial blood
20
blood flow
20
diabetic hypertensive
12
hypertensive diabetic-hypertensive
8
diabetic-hypertensive rats
8
spin-labeling mri
8
left ventricular
8
myocardial
5
blood
5
flow
5

Similar Publications

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

Background: Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias.

View Article and Find Full Text PDF

Objectives: Acute myocardial infarction is a critical medical condition that poses a significant risk to life. It is distinguished by the abrupt cessation of blood flow to a specific segment of the cardiac muscle. Acute myocardial infarction accounts for more than 15 % of global mortality annually.

View Article and Find Full Text PDF

Unlabelled: There are some reports of atrial screw-in lead perforation, but the entire lead body is rarely exposed outside the right atrium at an early stage of the procedure. A man in his 80s had undergone catheter ablation for atrial fibrillation (AF) and had recurrent AF and tachycardia-bradycardia syndrome with 8.8 s of sinus arrest, which caused presyncope.

View Article and Find Full Text PDF

Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!