Optimization and validation of an ischemic wound model.

Wound Repair Regen

Division of Plastic Surgery, Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA.

Published: May 2006

Localized tissue ischemia is a key factor in the development and poor prognosis of chronic wounds. Currently, there are no standardized animal models that provide sufficient tissue to evaluate the effect of modalities that may induce angiogenesis, and in vitro models of angiogenesis do not mimic the complexity of the ischemic wound bed. Therefore, we set out to develop a reproducible ischemic model for use in wound-healing studies. Male Sprague-Dawley rats underwent creation of dorsal bipedicle skin flaps with centrally located excisional wounds. Oxygen tension, wound-breaking strength, wound area, lactate, and wound vascular endothelial growth factor (VEGF) were compared in flaps measuring 2.5 and 2.0 x 11 cm with and without an underlying silicone sheet. We found that the center of the 2.0 cm flap with silicone remains in the critically ischemic range up to 14 days without tissue necrosis (33+/-4 vs. 49+/-6 mmHg in controls). Wound healing and breaking strength were significantly impaired and tissue lactate from the center of this flap was 2.9 times greater than tissue from either nonischemic controls and 2.5 cm flap (0.23+/-0.05 mg/dL/mg sample vs. 0.09+/-0.02 and 0.08+/-0.02, respectively). Vascular endothelial growth factor was 2 times greater than the nonischemic control. This ischemic wound model is relatively inexpensive, easy to perform, reproducible, and reliable. The excisional wounds provide sufficient tissue for biochemical and histologic analysis, and are amenable to the evaluation of topical and systemic therapies that may induce angiogenesis or improve wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1524-475X.2005.00080.xDOI Listing

Publication Analysis

Top Keywords

ischemic wound
12
wound model
8
provide sufficient
8
sufficient tissue
8
induce angiogenesis
8
excisional wounds
8
vascular endothelial
8
endothelial growth
8
growth factor
8
center flap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!