Fate of prions in soil: adsorption kinetics of recombinant unglycosylated ovine prion protein onto mica in laminar flow conditions and subsequent desorption.

Biomacromolecules

European Membrane Institute, UMR 5635 (CNRS, ENSCM, UMII), Université Montpellier II, CC047, 2 Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.

Published: February 2006

Prions can be disseminated in soils. Their interaction with soil minerals is a key factor for the assessment of risks associated with the transport of their infectivity. We did not examine here the infectivity itself but the adsorption kinetics of an ovine recombinant prion protein (ovine PrPrec), as a noninfectious model protein, on muscovite mica, a phyllosilicate with surface properties analogous to soil clays, in conditions of laminar flow through a channel. The protein was labeled with (125)I, and its adsorption examined between pH 4.0 and 9.0. At wall shear rate 100 s(-1), we found the process to be controlled mainly by transport at the beginning of the adsorption process. Additional experiments at 1000 s(-1) (pH 5 and 6) determined that the diffusion coefficient was in accordance with the hydrodynamic radius measured by size exclusion chromatography. The pseudo-plateau of the interfacial concentration with time was compatible with more than a monolayer and suggests the presence of aggregates. Desorption was not observed in the presence of buffer between pH 4 and 9 and sheep plasma, while the addition of alkaline detergent or 10(-1) M NaOH allowed an almost complete removal from the interface. The ensemble of results suggests that the largely irreversible adsorption of the ovine PrPrec onto mica is mainly due to electrostatic attraction between the protein and the highly negatively charged mica surface. Possible consequences for the mode of dissemination of prion proteins in soils are indicated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050492dDOI Listing

Publication Analysis

Top Keywords

adsorption kinetics
8
prion protein
8
laminar flow
8
ovine prprec
8
adsorption
5
protein
5
fate prions
4
prions soil
4
soil adsorption
4
kinetics recombinant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!