A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material. | LitMetric

Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material.

Biomacromolecules

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P R China.

Published: February 2006

A series of novel AB3-type monomers were prepared from nontoxic natural gallic acid and amino acids. These monomers were then melt-polycondensed in the presence of MgO as a catalyst via a transesterification process at 170-190 degrees C to yield the hyperbranched poly(ester-amide)s bearing terminal acetyl groups. FTIR and NMR spectra confirmed the structures of all the monomers and polymers. The degrees of branching, estimated from 1H NMR and quantitative 13C NMR spectra, were 0.50-0.68. These hyperbranched polymers displayed moderately high molecular weights. Hydrolytic and enzymatic degradation studies were carried out in vitro at 37.5 degrees C in NaOH hydrotropic solution and in Tris-HCl buffer (pH = 8.6) containing proteinase K, respectively. The results indicate that the hyperbranched poly(ester-amide)s are degradable hydrolytically as well as enzymatically, and the rate of hydrolytic degradation increases with the pH value of the solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm050531lDOI Listing

Publication Analysis

Top Keywords

hyperbranched polyester-amides
12
nmr spectra
8
synthesis characterization
4
characterization biodegradable
4
hyperbranched
4
biodegradable hyperbranched
4
polyester-amides based
4
based natural
4
natural material
4
material series
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!