Background: Tuberous sclerosis (TS) is a neurocutaneous genetically inherited disease with variable penetrance characterized by dysplasias and hamartomas affecting multiple organs. MR is the imaging method of choice to demonstrate structural brain lesions in TS.

Objective: To compare MR sequences and determine which is most useful for the demonstration of each type of brain lesion in TS patients.

Materials And Methods: We reviewed MR scans of 18 TS patients for the presence of cortical tubers, white matter lesions (radial bands), subependymal nodules, and subependymal giant cell astrocytoma (SGCA) on the following sequences: (1) T1-weighted spin-echo (T1 SE) images before and after gadolinium (Gd) injection; (2) nonenhanced T1 SE sequence with an additional magnetization transfer contrast medium pulse on resonance (T1 SE/MTC); and (3) fluid-attenuated inversion recovery (FLAIR) sequence.

Results: Cortical tubers were found in significantly (P<0.05) larger numbers and more conspicuously in FLAIR and T1 SE/MTC sequences. The T1 SE/MTC sequence was far superior to other methods in detecting white matter lesions (P<0.01). There was no significant difference between the T1 SE/MTC and T1 SE (before and after Gd injection) sequences in the detection of subependymal nodules; FLAIR sequence showed less sensitivity than the others in identifying the nodules. T1 SE sequences after Gd injection demonstrated better the limits of the SGCA.

Conclusion: We demonstrated the importance of appropriate MRI sequences for diagnosis of the most frequent brain lesions in TS. Our study reinforces the fact that each sequence has a particular application according to the type of TS lesion. Gd injection might be useful in detecting SGCA; however, the parameters of size and location are also important for a presumptive diagnosis of these tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00247-005-0033-xDOI Listing

Publication Analysis

Top Keywords

structural brain
8
brain lesions
8
tuberous sclerosis
8
cortical tubers
8
comparative analysis
4
analysis sequences
4
sequences detect
4
detect structural
4
lesions tuberous
4
sclerosis background
4

Similar Publications

Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.

View Article and Find Full Text PDF

Should we implement biomedical interventions like psychopharmaceuticals or brain stimulation that aim to improve morality in society? Since 2008, moral bioenhancement (MBE) has received considerable attention in bioethics, generating wide scholarly disagreement. However, reviews on the subject are few and either outdated or not structured in method. This paper addresses this gap by providing a scoping review of the last 15 years of debate on MBE (from 2008 to 2022).

View Article and Find Full Text PDF

Objective: The purpose of this study was to determine whether gray matter volume and diffusion-based metrics in associated white matter changed in breachers who had neuroimaging performed at two timepoints. A secondary purpose was to compare these changes in a group who had a one-year interval between their imaging timepoints to a group that had a two-year interval between imaging.

Methods: Between timepoints, clusters with significantly different gray matter volume were used as seeds for reconstruction of associated structural networks using diffusion metrics.

View Article and Find Full Text PDF

Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.

View Article and Find Full Text PDF

Epsilon Toxin from Induces the Generation of Extracellular Vesicles in HeLa Cells Overexpressing Myelin and Lymphocyte Protein.

Toxins (Basel)

December 2024

Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.

Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!