Nucleostemin is a marker of proliferating stromal stem cells in adult human bone marrow.

Stem Cells

Academic Rheumatology, Department of Clinical Science at North Bristol, University of Bristol, AMBI Research Laboratories, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, United Kingdom.

Published: April 2006

The identification of stem cell-specific proteins and the elucidation of their novel regulatory pathways may help in the development of protocols for control of their self-renewal and differentiation for cell-based therapies. Nucleostemin is a recently discovered nucleolar protein predominantly associated with proliferating rat neural and embryonic stem cells, and some human cancer cell lines. A comprehensive study of nucleostemin in human adult bone marrow stem cells is lacking. The aim of the study was to determine if nucleostemin is synthesized by adult bone marrow stem cells and to analyze its expression during their expansion and differentiation. Using a multipotential adherent population of stem cells, nucleostemin was localized to the nucleoli and occurred in 43.3% of the cells. There was a high level of expression of nucleostemin mRNA in bone marrow stem cells and this remained unchanged over time during cell expansion in culture. When bone marrow stem cells were stimulated to proliferate by fibroblast growth factor (FGF)-2, nucleostemin expression increased in a dose-dependent manner. Small interfering RNA (siRNA) knockdown of nucleostemin abolished the proliferative effect of FGF-2. When bone marrow stem cells were differentiated into chondrocytes, adipocytes, or osteocytes, nucleostemin expression was 70%-90% lower than in the undifferentiated cells retained in monolayer culture. We conclude that nucleostemin is a marker of undifferentiated human adult bone marrow stem cells and that it is involved in the regulation of proliferation of these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.2005-0416DOI Listing

Publication Analysis

Top Keywords

stem cells
36
bone marrow
28
marrow stem
24
cells
12
adult bone
12
nucleostemin
10
stem
10
nucleostemin marker
8
human adult
8
nucleostemin expression
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Targeted inhibition of Gus-expressing to promote intestinal stem cell and epithelial renovation contributes to the relief of irinotecan chemotoxicity by dehydrodiisoeugenol.

Acta Pharm Sin B

December 2024

The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to -glucuronidase (Gus) converting 10--glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!