Background: Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks.
Results: The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in betagamma-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment.
Conclusion: Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate that E. coli has adjusted its metabolic network to a changing environment by replacing the relatively central enzymes for better adapted orthologs from other prokaryotic species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316878 | PMC |
http://dx.doi.org/10.1186/1471-2164-6-159 | DOI Listing |
ACS Nano
January 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
Biochimie
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia. Electronic address:
Except for telomeres, G4 DNA structures in the human genome can be formed only within the context of double-stranded DNA. DNA duplexes flanking the G4 structure may potentially affect the G4 architecture and the binding of G4-specific ligands. Here, we examine the interaction of TMPyP4, NMM, and PDS ligands with three structures formed by the same DNA fragment containing the (GGGT) sequence: the G4 in duplex (dsG4), G4 in single-stranded DNA (ssG4) and perfect duplex DNA (ds).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
This paper presents a theoretical study on the distinguishable regiodivergent C-C Myers-Saito and C-C Schmittel routes of benzannelated enyne-allene cycloaromatizations, in which substitutions on the terminal alkyne by alkyl (-CH, -CHCH, -CH(CH) and -C(CH)) and aryl (-CH and -CH(CH)) groups were included. Mechanistic differences were found between substituents attached to alkynes with and without α-H, whereas in the former the Schmittel cyclization proceeds together with 1,8-H migration, in the latter it does so as the sole primitive event. It was also observed that bulky substituents preferentially favor the C-C Schmittel route, and the statistical prediction of regioselectivity is greatly affected when the ratio of accessible vibrational microstates of the transition states is included, especially in highly competing routes, , ΔΔ → 0.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kongens Lyngby, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!