Microarray and real-time PCR analyses of gene expression in the honeybee brain following caffeine treatment.

J Mol Neurosci

Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra, Australia.

Published: February 2006

AI Article Synopsis

Article Abstract

To test the idea that caffeine might induce changes in gene expression in the honeybee brain, we contrasted the transcriptional profiles of control and caffeine-treated brains using high-throughput cDNA microarrays. Additional quantitative real-time PCR was performed on a subset of eight transcripts to visualize the temporal changes induced by caffeine. Genes that were significantly upregulated in caffeine-treated brains included those involved in synaptic signaling (GABA:Na symporter, dopamine D2R-like receptor, and synapsin), cytoskeletal modifications (kinesin and microtubule motors), protein translation (ribosomal protein RpL4, elongation factors), and calcium-dependent processes (calcium transporter, calmodulin- dependent cyclic nucleotide phosphodiesterase). In addition, our study uncovered a number of novel, caffeine-inducible genes that appear to be unique to the honeybee. Time-dependent profiling of caffeine-sensitive gene expression shows significant upregulation 1 h after treatment followed by moderate downregulation after 4 h with no additional changes occuring after 24 h. Our results provide initial evidence that the dopaminergic system and calcium exchange are the main targets of caffeine in the honeybee brain and suggest that molecular responses to caffeine in an invertebrate brain are similar to those in vertebrate organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1385/JMN:27:3:269DOI Listing

Publication Analysis

Top Keywords

gene expression
12
honeybee brain
12
real-time pcr
8
expression honeybee
8
caffeine-treated brains
8
caffeine
5
microarray real-time
4
pcr analyses
4
analyses gene
4
honeybee
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!