Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adult rats were orally administered with a single dose of sanguinarine (10 mg SA per 1 kg body weight) in 1.0 ml water. In the plasma and the liver, dihydrosanguinarine (DHSA) was identified as a SA metabolite by high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC/ESI-MS). Significantly higher levels of DHSA were found in both the plasma and the liver in comparison with those of SA. SA and DHSA were not detected in the urine. The formation of DHSA might be the first step of SA detoxification in the organism and its subsequent elimination in phase II reactions. Benz[c]acridine (BCA), in the literature cited SA metabolite, was found neither in urine nor in plasma and liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2005.10.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!