Surface composition and texture of titanium polished with colloidal silica suspension and chromic oxide slurry.

Dent Mater J

Division of Biomaterial Science, Course for Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori 2-5274, Niigata 951-8514, Japan.

Published: September 2005

AI Article Synopsis

Article Abstract

CP titanium was polished with a colloidal silica suspension and chromic oxide slurry under low and high pressures. The polished surfaces were characterized by means of EPMA and XPS. Irrespective of polishing pressure, colloidal silica suspension successfully created a mirror-like surface that was clean at EPMA level. However, XPS detected a small amount of silicon on the outermost surface. On the other hand, chromic oxide slurry under high pressure yielded a very uneven surface with numerous scratches. The EPMA and XPS results suggested the presence of chromium-containing species in the polished surface, which might include hydroxides as well as oxides. In addition, the level of oxygen concentration was noticeably raised, which probably resulted from the increase of surface oxide film thickness or the extension of oxide-to-metal transition zone.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.24.409DOI Listing

Publication Analysis

Top Keywords

colloidal silica
12
silica suspension
12
chromic oxide
12
oxide slurry
12
titanium polished
8
polished colloidal
8
suspension chromic
8
epma xps
8
surface
6
surface composition
4

Similar Publications

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

Water-based acrylic emulsions are a crucial component of water-based ink. Preventing visible cracks in emulsion coating during drying is a great challenge due to the high polarity and high surface tension of water. Herein, we propose that the cracking resistance of the coating can be enhanced through the incorporation of hydrophobic silica nanoparticles.

View Article and Find Full Text PDF

Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics.

Adv Colloid Interface Sci

January 2025

Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:

In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!