We experimentally demonstrate ultrafast all-optical modulation using a micrometer-sized silicon photonic integrated device. The device transmission is strongly modulated by photoexcited carriers generated by low-energy pump pulses. A p-i-n junction is integrated on the structure to permit control of the generated carrier lifetimes. When the junction is reverse biased, carriers are extracted from the device in a time as short as 50 ps, permitting greater than 5 Gbit/s modulation of optical signals on a silicon chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.30.002891 | DOI Listing |
Photoacoustics
February 2025
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Femtosecond photoacoustic detection is a powerful all-optical technique for characterizing metal nanofilms. However, the lack of accurate descriptions of the temperature-dependent optical properties of metal nanofilms during ultrafast thermal processes hinders the deep understanding of this dynamic behavior, leading to compromised measurement accuracy. To address this, we developed Critical Point Models (CPMs) for copper and AlCu nanofilms to describe their dynamic optical properties during photoacoustic testing.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.
View Article and Find Full Text PDFNano Lett
January 2025
Regensburg Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany.
Detecting electromagnetic radiation scattered from a tip-sample junction has enabled overcoming the diffraction limit and started the flourishing field of polariton nanoimaging. However, most techniques only resolve amplitude and relative phase of the scattered radiation. Here, we utilize field-resolved detection of ultrashort scattered pulses to map the dynamics of surface polaritons in both space and time.
View Article and Find Full Text PDFIn this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime.
View Article and Find Full Text PDFNanophotonics
November 2024
Department of Physics, Shanghai University, Shanghai 200444, China.
Optical logic gates based on nonlinear optical property of material with ultrafast response speed and excellent computational processing power can break the performance bottleneck of electronic transistors. As one of the layered 2D materials, TaNiS exhibits high anisotropic mobility, exotic electrical response, and intriguing optical properties. Due to the low-symmetrical crystal structures, it possesses in-plane anisotropic physical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!