Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
C-arm fluoroscopy is ubiquitous in contemporary surgery, but it lacks the ability to accurately reconstruct three-dimensional (3D) information. A major obstacle in fluoroscopic reconstruction is discerning the pose of the x-ray image, in 3D space. Optical/magnetic trackers tend to be prohibitively expensive, intrusive and cumbersome in many applications. We present single-image-based fluoroscope tracking (FTRAC) with the use of an external radiographic fiducial consisting of a mathematically optimized set of ellipses, lines, and points. This is an improvement over contemporary fiducials, which use only points. The fiducial encodes six degrees of freedom in a single image by creating a unique view from any direction. A nonlinear optimizer can rapidly compute the pose of the fiducial using this image. The current embodiment has salient attributes: small dimensions (3 x 3 x 5 cm); need not be close to the anatomy of interest; and accurately segmentable. We tested the fiducial and the pose recovery method on synthetic data and also experimentally on a precisely machined mechanical phantom. Pose recovery in phantom experiments had an accuracy of 0.56 mm in translation and 0.33 degrees in orientation. Object reconstruction had a mean error of 0.53 mm with 0.16 mm STD. The method offers accuracies similar to commercial tracking systems, and appears to be sufficiently robust for intraoperative quantitative C-arm fluoroscopy. Simulation experiments indicate that the size can be further reduced to 1 x 1 X 2 cm, with only a marginal drop in accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.2047782 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!