In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.2044431DOI Listing

Publication Analysis

Top Keywords

electron output
12
electron therapy
12
treatment head
12
electron
10
electron collimator
8
abutting segments
8
energy modulated
8
modulated electron
8
xmlc tracking
8
clearance air
8

Similar Publications

A guide to CNN-based dense segmentation of neuronal EM images.

Microscopy (Oxf)

January 2025

Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.

Large-scale reconstitution of neuronal circuits from volumetric electron microscopy images is a remarkable research goal in neuroanatomy. However, the large-scale reconstruction is a result of automatic segmentation using convolutional neural networks (CNNs), which is still challenging for general researchers to perform. This review focuses on two representative CNNs for dense neuronal segmentation: flood-filling networks (FFN) and local shape descriptors (LSD)-predicting U-Net (LSD network).

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating and testing Cobalt-doped zinc oxide nanoparticles as a photocatalyst for degrading the antibiotic ciprofloxacin (CIPF) under visible LED light.
  • It was found that 10% Cobalt-doped ZnO nanoparticles were the most effective, achieving over 99% degradation of CIPF in just 90 minutes, and maintained their efficiency across three cycles of use.
  • The research also optimized the conditions for maximum degradation efficiency using statistical methods and simulated data using Artificial Neural Networks, achieving a strong correlation for the model’s accuracy.
View Article and Find Full Text PDF

On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features.

Adv Sci (Weinh)

January 2025

College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.

The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.

View Article and Find Full Text PDF

The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention.

View Article and Find Full Text PDF

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!