A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiclass molecular cancer classification by kernel subspace methods with effective kernel parameter selection. | LitMetric

Multiclass molecular cancer classification by kernel subspace methods with effective kernel parameter selection.

J Bioinform Comput Biol

Department of Bioinformatics, Graduate School of Systems Life Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.

Published: October 2005

Microarray techniques provide new insights into molecular classification of cancer types, which is critical for cancer treatments and diagnosis. Recently, an increasing number of supervised machine learning methods have been applied to cancer classification problems using gene expression data. Support vector machines (SVMs), in particular, have become one of the most effective and leading methods. However, there exist few studies on the application of other kernel methods in the literature. We apply a kernel subspace (KS) method to multiclass cancer classification problems, and assess its validity by comparing it with multiclass SVMs. Our comparative study using seven multiclass cancer datasets demonstrates that the KS method has high performance that is comparable to multiclass SVMs. Furthermore, we propose an effective criterion for kernel parameter selection, which is shown to be useful for the computation of the KS method.

Download full-text PDF

Source
http://dx.doi.org/10.1142/s0219720005001491DOI Listing

Publication Analysis

Top Keywords

cancer classification
12
kernel subspace
8
kernel parameter
8
parameter selection
8
classification problems
8
multiclass cancer
8
multiclass svms
8
cancer
6
multiclass
5
kernel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!