We present an approach combining bioinformatics prediction with experimental microarray validation to identify new cell cycle-regulated genes in Saccharomyces cerevisiae. We identify in the order of 100 new cell cycle-regulated genes and show by independent data that these genes in general tend to be more weakly expressed than the genes identified hitherto. Among the genes not previously suggested to be periodically expressed we find genes linked to DNA repair, cell size monitoring and transcriptional control, as well as a number of genes of unknown function. Several of the gene products are believed to be phosphorylated by Cdc28. For many of these new genes, homologues exist in Schizosaccharomyces pombe and Homo sapiens for which the expression also varies with cell cycle progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1302 | DOI Listing |
Nat Cell Biol
January 2025
Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.
View Article and Find Full Text PDFCoordinated expression of replication-dependent (RD) histones genes occurs within the Histone Locus Body (HLB) during S phase, but the molecular steps in transcription that are cell cycle regulated are unknown. We report that RNA Pol II promotes HLB formation and is enriched in the HLB outside of S phase, including G1-arrested cells that do not transcribe RD histone genes. In contrast, the transcription elongation factor Spt6 is enriched in HLBs only during S phase.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Radiation Oncology, University of Texas Health and Science Center, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair.
View Article and Find Full Text PDFCell Death Differ
December 2024
Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Dysregulation of histone supply is implicated in various cancers, including lung adenocarcinoma (LUAD), although the underlying mechanisms remain poorly understood. Here, we demonstrate that knockout of Fbxo45 in mouse alveolar epithelial type 2 (AT2) cells leads to spontaneous LUAD. Our findings reveal that FBXO45 is a novel cell-cycle-regulated protein that is degraded upon phosphorylation by CDK1 during the S/G2 phase.
View Article and Find Full Text PDFSci Rep
December 2024
CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
Accurate genome inheritance during cell division relies on a complex chromosome segregation mechanism. This process occurs once all the kinetochores of sister chromatids are attached to microtubules emanating from the opposite poles of the mitotic spindle. To control the precision of this mechanism, the Chromosome Passenger Complex (CPC) actively identifies and corrects improper microtubule attachments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!