Purpose: Mutations in the fibroblast growth factor receptor 3 (FGFR3) occur in 50% of primary bladder tumors. An FGFR3 mutation is associated with good prognosis, illustrated by significantly lower percentage of patients with progression and disease-specific mortality. FGFR3 mutations are especially prevalent in low grade/stage tumors, with pTa tumors harboring mutations in 85% of the cases. These tumors recur in 70% of patients. Efficient FGFR3 mutation detection for prognostic purposes and for detection of recurrences in urine is an important clinical issue. In this paper, we describe a simple assay for the simultaneous detection of nine different FGFR3 mutations.
Experimental Design: The assay consists of one multiplex PCR, followed by extension of primers for each mutation with a labeled dideoxynucleotide. The extended primers are separated by capillary electrophoresis, and the identity of the incorporated nucleotide indicates the presence or absence of a mutation.
Results: The assay was found to be more sensitive than single-strand conformation polymorphism analysis. Mutations could still be detected with an input of only 1 ng of genomic DNA and in a 20-fold excess of wild-type DNA. Moreover, in urine samples from patients with a mutant tumor, the sensitivity of mutation detection was 62%.
Conclusions: We have developed a fast, easy to use assay for the simultaneous detection of FGFR3 mutations, which can be of assistance in clinical decision-making and as an alternative for the follow-up of patients by invasive cystoscopy for the detection of recurrences in urine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-05-1045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!