D-serine is now considered to be an endogenous co-agonist of the NMDA receptor in mammalian brain. To obtain insight into the molecular mechanisms underlying D-serine metabolism and function, we explored transcripts that are responsive to D-serine in the neocortex of the 8-day-old infant rat by a differential cloning technique, RNA arbitrarily primed PCR. We isolated a novel D-serine inducible transcript, D-serine-responsive transcript-2 (dsr-2), that was exclusively expressed in the brain. Sequence analysis of the corresponding cDNAs to the transcript revealed that the dsr-2 mRNA consists of 7199 nucleotides with an open reading frame encoding 111 amino acids. The dsr-2 gene was located on the reverse strand within an intron of the neurexin-3alpha gene, mapped to rat chromosome 6q24-31. The regional distribution of the basal expression of dsr-2 and its ontogenic changes in the brain closely correlated with those of free D-serine and of NMDA receptor R2B subunit mRNA, but were somewhat different from those of the neurexin-3alpha transcript. These findings suggest that dsr-2 may be involved in D-serine metabolism and/or function, and in the interactions between D-serine, NMDA receptor and neurexin-3alpha, in mammalian brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2005.03535.x | DOI Listing |
J Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFJ Pain Res
January 2025
Department of Pediatrics- Division of Pediatric Oncology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
Introduction: Anti-GD2 immunotherapy has improved outcomes for children with high-risk neuroblastoma (HRNBL). Dinutuximab promotes complement-mediated reaction against disialoganglioside GD2, which is expressed in peripheral nerves and over-expressed in neuroblastoma. Dinutuximab is associated with ≥grade 3 neuropathic pain.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:
Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, Faculty of Health Care and Social Work, Trnava University and University Hospital, 917 02 Trnava, Slovakia.
The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!