The hydrophobic effect is a major driving force in all chemical and biological events involving chain collapse in aqueous solution. Here, we show that the burial of nonpolar solvent-accessible surface area (NSASA) is a powerful criterion to predict the folding and misfolding behavior of small single-domain proteins as a function of chain elongation. This bears fundamental implications for co- and post-translational protein folding in the cell and for understanding the interplay between noncovalent interactions and formation of native-like structure and topology. Comparison between the fraction of NSASA in fully unfolded and folded elongating chains shows that efficient burial of nonpolar surface area is preferentially achieved only when the polypeptide chain is almost complete. This effect has no preferential vectorial character in that it is present upon elongation from both the N and C termini. For incomplete chains that do not have the ability to fold and bury nonpolar surface intramolecularly, the overall hydrophobic nature of the polypeptide chain (expressed as FBA, i.e., fractional buried surface area per residue) dictates the tendency toward misfolding and self-association. N-terminal chains characterized by FBA exceeding 0.73 are likely to misfold and aggregate, if unable to fold intramolecularly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431584PMC
http://dx.doi.org/10.1021/ja0560682DOI Listing

Publication Analysis

Top Keywords

surface area
16
solvent-accessible surface
8
folding misfolding
8
function chain
8
chain elongation
8
burial nonpolar
8
nonpolar surface
8
polypeptide chain
8
surface
5
chain
5

Similar Publications

Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases.

View Article and Find Full Text PDF

Eco-epidemiological Survey of Trypanosoma cruzi in Dogs from Mendoza, Argentina.

Ecohealth

January 2025

Laboratorio de Medicina y Endocrinología de la Fauna Silvestre, IMBECU, UNCuyo - CONICET, Av. Dr. Adrian Ruiz Leal s/n, Parque General San Martín, Mendoza, Argentina.

Urban domestic dog populations can provide important clues about the eco-epidemiological characteristics of Trypanosoma cruzi, the causative agent of Chagas disease (ChD). Given the limited data on ChD from the Metropolitan Area of Mendoza, Argentina, a seroprevalence survey of 327 dogs across an urban-rural gradient was conducted between April 2018 and May 2019. Seropositive cases were analyzed considering host, social, and environmental factors, subtypes (DTUs), and bloodstream parasite load.

View Article and Find Full Text PDF

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

Construction of an electrochemical sensor for the detection of methyl parathion with three-dimensional graphdiyne-carbon nanotubes.

Mikrochim Acta

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).

View Article and Find Full Text PDF

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!