Stable biomimetic super-hydrophobic engineering materials.

J Am Chem Soc

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.

Published: November 2005

AI Article Synopsis

Article Abstract

We describe a simple and inexpensive method to produce super-hydrophobic surfaces on aluminum and its alloy by oxidation and chemical modification. Water or aqueous solutions (pH = 1-14) have contact angles of 168 +/- 2 and 161 +/- 2 degrees on the treated surfaces of Al and Al alloy, respectively. The super-hydrophobic surfaces are produced by the cooperation of binary structures at micro- and nanometer scales, thus reducing the energies of the surfaces. Such super-hydrophobic properties will greatly extend the applications of aluminum and its alloy as lubricating materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0547836DOI Listing

Publication Analysis

Top Keywords

super-hydrophobic surfaces
8
aluminum alloy
8
stable biomimetic
4
super-hydrophobic
4
biomimetic super-hydrophobic
4
super-hydrophobic engineering
4
engineering materials
4
materials describe
4
describe simple
4
simple inexpensive
4

Similar Publications

Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel.

View Article and Find Full Text PDF

Oil recovery and heat transfer performance of polyurethane sponges coated with 3D carbon nano networks.

J Hazard Mater

December 2024

Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Heatable super hydrophobic polyurethane (PU) sponges (S-GNS/CNT/PVA@PU) containing three-dimensional (3D) carbon nano-networks (CNNs) coatings made from two-dimensional (2D) expanded graphite nano-sheets (GNS) bridged by one-dimensional (1D) carbon nano-tubes (CNT) were constructed using polyvinyl alcohol (PVA) as binder, in which light and/or electric energy could be rapidly converted into heat to reduce the viscosity of spilled heavy oils, resulting in greatly increased oil. Their heavy oil recovery rate could reach 792 kg/(m·h) under combined light and Joule heating of 1 sun and 5 V. Surface heat dissipating coefficient Ks, heat dissipating index n, and surface heat absorption capacity Cs were studied relating to sizes and shapes of surface heating fields under varied heating modes.

View Article and Find Full Text PDF

Engineering Wettability Transitions on Laser-Textured Shark Skin-Inspired Surfaces via Chemical Post-Processing Techniques.

Micromachines (Basel)

November 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential.

View Article and Find Full Text PDF

Successive Reactions of Trimethylgermanium Chloride to Achieve > 26% Efficiency MA-Free Perovskite Solar Cell With 3000-Hour Unattenuated Operation.

Adv Mater

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.

View Article and Find Full Text PDF

Force of adhesion between droplets and super-hydrophobic surfaces: Closed-form analytical expressions.

J Chem Phys

December 2024

Departamento de Física Química, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

Super-hydrophobic and liquid-repellent surfaces can be characterized experimentally in tensile adhesion experiments with the force (FAdh) required to detach a droplet from such surfaces, but analytical expressions that relate FAdh to the surface energy, w, are still missing. In this work, we derive analytical expressions for FAdh between droplets or radius r and super-hydrophobic surfaces on which the contact angle is greater than 150°. By applying the general condition for the onset of instability in different mechanical configurations, we find FAdh = -πwr and FAdh ≈ -(4/5)πwr, for the fixed-force and fixed-grip configurations, respectively, as well as other expressions that depend on the ratio of the spring constant of a generic force measuring apparatus to the surface tension of the liquid composing the droplet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!