Recent studies have indicated that some structural features of arabinoxylans, the major cell wall polysaccharides, might be potential quality markers in the selection of rye breeding materials. To specify the most appropriate characteristics, the differences in the structure of cell wall components were studied in two ryes with high and low breadmaking qualities. Two cell wall fractions were isolated from the outer layers of the grain (pooled shorts and bran fractions) by a consecutive water extraction with alpha-amylase (WE-A) and proteinase K (WE-P). Polysaccharides predominated in the WE-A fraction (approximately 64%, mainly arabinoxylans). By contrast, the WE-P fraction contained mostly protein (approximately 63%), and its level of polysaccharides was relatively low (approximately 18%). The 1H NMR and sugar analysis of the ammonium sulfate precipitated subfractions revealed that the WE-A was built of four arabinoxylan populations with marked structural differences (arabinose-to-xylose ratios, Ara/Xyl, of approximately 0.3, 0.5, 0.8, and 1.2). Instead, the arabinoxylans present in the WE-P were generally enriched in disubstituted xylopyranosyl residues. The ratio of phenolic components to arabinose residues in the WE-P fraction (indicated by 1H NMR) and the proportion of polymers with the highest molecular weights in the WE-A fraction (revealed by HPSEC) distinguished well two ryes with diverse breadmaking qualities. Much less obvious differences between both ryes were observed in the ratio of amide I to amide II band intensities of FTIR spectra for the WE-P and in the level of phenolic acids and ferulic acid dehydrodimers for both cell wall preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf051556e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!