[Chemical reaction: See text] Nucleosides bearing a branched ribose have significant promise as therapeutic agents and biotechnological and biochemical tools. Here we describe synthetic entry into a new subclass of these analogues, 2'-C-beta-difluoromethylribonucleosides. We constructed the glycosylating agent 4 in three steps from 1,3,5-tri-O-benzoyl-alpha-D-ribofuranose 1. The key steps included nucleophilic addition of difluoromethyl phenyl sulfone to 2-ketoribose 2 followed by mild and efficient reductive desulfonation. Ribofuranose 4 glycosylated bis(trimethylsilyl)uracil directly, giving difluoromethyluridine 7 efficiently after deprotection. Conversion of 4 to the corresponding ribofuranosyl bromide allowed efficient access to C, A, and G analogues. A related approach starting from methyl D-ribofuranose offered synthetic entry into the diastereomeric manifold, 2'-C-alpha-difluoromethyl-arabino-alpha-pyrimidine. To incorporate 2'-C-beta-difluoromethyluridine into an oligodeoxynucleotide we converted 7 to the bisphosphate and carried out successive ligation reactions using T4 RNA ligase and T4 DNA ligase. Analogous to natural RNA linkages, the resulting oligonucleotide undergoes hydroxide-catalyzed backbone scission at the difluoromethyluridine residue via internal transphosphorylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo0507542 | DOI Listing |
Curr Org Synth
January 2025
Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.
Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.
View Article and Find Full Text PDFChem Asian J
January 2025
Northwest University, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science,, 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone,, Chang'an District, 710127, Xi'an, CHINA.
Herein, we describe a protocol for Brønsted acid-catalyzed regioselective coupling of azoles such as pyrazoles, 1,2,3-triazole, 1,3,4-triazole, benzotriazole, indazole and tetrazole, to cyclobutenes. These azoles could be directly coupled with various arylcyclobutenes with high site-selectivity, offering a distinct entry to more functionalized cyclobutanes. The usage of inexpensive TsOH•H2O catalyst, broad substrate scope, and open-air conditions make this protocol practically viable.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.
Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan; Department of Pharmacy, Korea University, Sejong 20019, South Korea. Electronic address:
The study investigated the anxiolytic, antidepressant, sedative/hypnotic and in silico molecular docking properties of the synthetic ephedrine-based derivative of thiourea, 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea. Safety profile of the compound at various doses was determined in an acute toxicity test. Results showed significant anti-anxiety effects of the compound in all mice studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!