Spatial frequency tuning of brightness polarity identification.

J Opt Soc Am A Opt Image Sci Vis

Department of Psychology, University of Helsinki, Finland.

Published: October 2005

Recent studies have shown that cells in the primary visual cortex can, in addition to borders, also encode surface brightness. Whether the brightness is encoded by a large extraclassical receptive field or by a filling-in type mechanism activated by the luminance border is not known. These explanations imply different spatial frequency tunings for the underlying mechanism. In a psychophysical masking paradigm we measured spatial frequency tuning functions for identification of both luminance polarity (bright/dark) and luminance border orientation of oval and circular luminance patches with variable diameters (0.2-10 deg). For both tasks we obtained nearly overlapping narrow (1.5 octave) bandpass masking tuning functions centered at 1.5-5.0 c/deg. Stimulus size and shape had only minimal effect on the tuning functions. The results favor the idea of brightness filling-in and suggest that the cells activated by the luminance border modulate the activity of the cells signaling surface brightness. Further, the brightness processing mechanism is spatial frequency selective.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.22.002239DOI Listing

Publication Analysis

Top Keywords

spatial frequency
16
luminance border
12
tuning functions
12
frequency tuning
8
surface brightness
8
brightness brightness
8
activated luminance
8
brightness
6
luminance
5
spatial
4

Similar Publications

Understanding the Association Between Neighborhoods and Adolescent Sleep: Evidence from Add Health.

Sleep Epidemiol

December 2024

Socio-Spatial Determinants of Health (SSDH) Laboratory, Population and Community Health Sciences Branch, Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland.

Introduction: Research suggests that perceived neighborhood social environments (PNSE) may contribute to gender and race/ethnicity-based sleep disparities. Our study aimed to examine associations between PNSE factors and adolescents' sleep patterns. As a secondary aim, we examined how gender and race/ethnic groups might moderate these associations.

View Article and Find Full Text PDF

Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data.

Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process.

View Article and Find Full Text PDF

In the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.

View Article and Find Full Text PDF

The Goos-Hänchen and Imbert-Fedorov shifts are significant wave phenomena, yet the underlying mechanism governing the spatiotemporal vortex pulses reflected and refracted on graphene remains opaque. In this study, we analytically derive the expressions for the centroid shifts of spatiotemporal vortex pulses by applying the Fresnel-Snell formulas to each plane wave in the incident spatiotemporal vortex pulse spectrum. We demonstrate that the longitudinal shifts are correlated with the angular shifts, and thus, both are subject to resonant enhancement in the vicinity of the Brewster angle.

View Article and Find Full Text PDF

We developed a scanning dual-comb spectroscopic microscopy (S-DCSM) system to acquire multidimensional optical information of transparent or semi-transparent samples. The system demonstrated the capability to perform spectral imaging of absorbance, optical phase, optical thickness, linear dichroism, and birefringence within the spectral range covered by optical frequency combs (OFCs). The spatial distribution of optical thickness in HeLa cells was measured as 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!