Recessive type 3 von Willebrand disease (vWD) is a severe hemophilia-like bleeding disorder caused by homozygosity or double heterozygosity for two nonsense mutations (null alleles) and characterized by a strongly prolonged bleeding time (BT), absence of ristocetin-induced platelet aggregation (RIPA), absence of von Willebrand factor (vWF) protein, and prolonged activated partial thromboplastin time (APTT) due to factor VIII (FVIIIC): deficiency. Recessive severe type 1 vWD is caused by homozygosity or double heterozygosity for a missense mutation and differs from type 3 vWD by the detectable presence vWF:antigen (Ag) and FVIII:C levels between 0.09 and 0.40 U/mL. Carriers of one null allele or missense mutations are usually asymptomatic at vWF levels of 50% of normal. Mild recessive type 1 vWD may be due to a missense mutations, or one missense mutation plus blood group O. The so-called dominant type 1 vWD secretion defect and type 1 Vicenza are caused by a heterozygous missense mutation in the vWF gene that produces a mutant vWF protein having a dominant effect on the normal vWF protein produced by the normal vWF allele with regard to the defective processing, storage secretion, and/or proteolysis of vWF in endothelial cells and clearing from plasma consistent with a type 2 phenotype of vWD. Typical type 2 vWD patients, except 2N, show a defective vWF protein, decreased ratios for vWF:ristocetin cofactor [vWF:RCo]/vWF:Ag and vWF:collagen binding factor [vWF:CB]/vWF:Ag and prolonged BT. The BT is normal and FVIII:C levels clearly are lower than vWF:Ag in type 2N vWD. Multimeric analysis of vWF in plasma demonstrates that proteolysis of vWF is increased in type 2A and 2B vWD, with increased triplet structure of each band (not present in types 2M and 2U). Proteolysis of vWF is minimal in type 2C, 2D, and 2E variants that show aberrant multimeric structure of individual oligomers. vWD 2B differs from 2A by normal vWF in platelets, and increased RIPA. RIPA is normal in mild, decreased in moderate, and absent in severe type 2A vWD. RIPA is decreased or absent in 2M, 2U, 2C, and 2D; variable in 2E; and normal in 2N and dominant type 1. vWD 2M is usually mild and features decreased vWF:RCo and RIPA, and a normal or near-normal vWF multimeric pattern in a low-resolution agarose gel. vWD 2A-like or unclassifiable (2U) is distinct from 2A and 2B and typically features low vWF:RCo and RIPA with the relative lack of large vWF multimers. vWD type 2C is recessive; the dominant type 2D is rare. The response to desmopressin acetate (DDAVP) of vWF parameters is normal in pseudo-vWD and mild type 1. The responses to DDAVP of FVIII:C and vWF parameters in vWD 2M, Vincenza, 2E, and mild 2A, 2U, and 2N are transiently good for a variable number of hours to arrest mucocutaneous bleeding episodes or to prevent bleeding during minor surgery or trauma. However, the responses are not good enough to treat major bleedings or to prevent bleeding during major surgery or trauma. The response to DDAVP of vWF parameters is poor in recessive type 3, 1 and 2C, and dominant 2A, 2B, and 2U. Proper recommendations of FVIII/vWF concentrates using FVIII:C and vWF:RCo unit dosing for the prophylaxis and treatment of bleeding episodes in type 2 disease that is nonresponsive to DDAVP and in type 3 vWD are proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2005-922230 | DOI Listing |
Desmopressin (DDAVP) can be used to prevent or stop bleeding. However, large inter-individual variability is observed in DDAVP response and determinants are largely unknown. In this systematic review and meta-analysis we aim to identify the response to DDAVP, and the factors that determine DDAVP response in patients.
View Article and Find Full Text PDFBlood Adv
January 2025
Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
Treatment options for the bleeding disorder von Willebrand disease type 2B (VWD2B) are insufficient and fail to address the negative effects of circulating mutant von Willebrand factor (VWF). The dominant-negative nature of VWD2B makes functionally defective VWF an interesting therapeutic target. Previous in vitro studies have demonstrated the feasibility of allele-selective silencing of mutant VWF using small interfering RNAs (siRNAs) targeting common single nucleotide polymorphisms (SNPs) in the human VWF gene, an approach that can be applied irrespective of the disease-causing VWF mutation.
View Article and Find Full Text PDFHemasphere
January 2025
Department of Pediatric Hematology and Oncology Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam Rotterdam The Netherlands.
Limited data are available on VWF activity (VWF:Act) and factor VIII (FVIII:C) levels during delivery after VWF/FVIII concentrate administration in women with von Willebrand disease (VWD). We aimed to evaluate treatment with a specific VWF/FVIII concentrate on factor levels in women with VWD during delivery and the postpartum period. A retrospective single-center study was conducted between January 1, 2008, and August 1, 2022.
View Article and Find Full Text PDFIntroduction: Hereditary bleeding disorders stem from the absence or insufficient levels of particular clotting proteins, essential for facilitating coagulation in the clotting cascade. Among the most prevalent are hemophilia A (deficiency of Factor VIII), hemophilia B (deficiency of Factor IX), and von Willebrand disease. Management of pharmacoresistant epilepsy is more difficult in a patient with bleeding disorder due to increased risk of bleeding during surgery.
View Article and Find Full Text PDFNAR Mol Med
October 2024
Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA.
The A1 domain in Von Willebrand Factor (VWF) initiates coagulation through binding to platelet glycoprotein GPIbα receptors. Von Willebrand Disease (VWD)-Mutations in A1 that either impair (type 2M) or enhance (type 2B) platelet adhesion to VWF can locally destabilize and even misfold the domain. We leveraged misfolding in the gain-of-function type 2B VWD phenotype as a target, distinct from the normal conformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!