Two plasmid DNA vaccines, encoding either products that are retained in the cytosol and degraded in the proteasome (tVacs; hPSMAt), or secreted proteins (sVacs; hPSMAs) were evaluated for stimulation of cytotoxic cell or antibody responses. Immunization with both vectors led to generation of cell cytotoxicity providing granulocyte-macrophage colony-stimulating factor was administered with the vaccine. Spleen cells from animals immunized with hPSMAt demonstrated stronger cytotoxicity to the target cells. Priming with a vector that encoded a xenogeneic protein (hPSMAt; 'xenogeneic' construct) and boosting with a vector that encoded an autologous protein (rPSMAt; 'autologous' construct) gave the best protection against tumor challenge. Immunization with tVacs did not lead to formation of antibodies to the target protein as detected by Western blot or ELISA, while immunization with sVacs or with the protein did. Antibodies were of mixed Th1-Th2 isotype. Priming with tVacs and boosting with protein also resulted in antibody formation, but in this case the antibodies were from the cytotoxic, Th1 isotype. The best strategy to obtain a strong cellular cytotoxic response, therefore, seems to be gene-based vaccinations with tVacs, priming with the 'xenogeneic' and boosting with the 'autologous' constructs. When cytotoxic antibody production is the goal, priming should be performed with the tVacs while boosting with the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7700914DOI Listing

Publication Analysis

Top Keywords

vector encoded
8
tvacs boosting
8
boosting protein
8
protein
6
tvacs
5
immune responses
4
responses psma
4
psma gene-based
4
gene-based vaccination
4
vaccination immunotherapy-a
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!