Polygonum multiflorum stilbeneglycoside (PMS) is a water-soluble fraction of Polygonum multiflorum Thunb., one of the most famous tonic traditional Chinese medicines, that has protective effects on the cardiovascular system. The purpose of the present study is to elucidate the effects of PMS on macrophage-derived foam cell functions and the reduction of severity of atherosclerosis in hypercholesterolemic New Zealand White (NZW) rabbits. NZW rabbits were fed for 12 weeks with a normal diet, a high cholesterol diet, or a high cholesterol diet associated with irrigation with different doses of PMS (25, 50, or 100 mg/kg). Treatment of NZW rabbits fed with high cholesterol diet with 100 mg/kg PMS attenuated the increase in plasma cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and plasma triglyceride. Treatment with 50 and 100 mg/kg PMS caused 43% and 60% decrease in atherosclerotic lesioned area ratio to total surface area, respectively. In U937 foam cells, PMS could decrease the high expression of intercellular adhesion molecule (ICAM)-1 protein and the vascular endothelial growth factor (VEGF) protein levels in the medium induced by oxidized lipoprotein when analyzed by flow cytometry. The results proved that PMS is a powerful agent against atherosclerosis and that PMS action could possibly be through the inhibition of the expression of ICAM-1 and VEGF in foam cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.fp0050333 | DOI Listing |
Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.
View Article and Find Full Text PDFAtherosclerosis, a major contributor to cardiovascular disease, involves lipid accumulation and inflammatory processes in arterial walls, with oxidized low-density lipoprotein (OxLDL) playing a central role. OxLDL is increased during aging and stimulates monocyte transformation into foam cells and induces metabolic reprogramming and pro-inflammatory responses, accelerating atherosclerosis progression and contributing to other age-related diseases. This study investigated the effects of Mdivi-1, a mitochondrial fission inhibitor, and S1QEL, a selective complex I-associated reactive oxygen species (ROS) inhibitor, on OxLDL-induced responses in monocytes.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand.
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores.
View Article and Find Full Text PDFSci Rep
January 2025
School of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, China.
DNA methylation modifications are an important mechanism affecting the process of atherosclerosis (AS). Previous studies have shown that Galectin-8 (GAL8) DNA methylation level is associated with sudden death of coronary heart disease or acute events of coronary heart disease. However, the mechanism of GAL8 DNA methylation and gene expression in AS has not been elucidated, prompting us to carry out further research on it.
View Article and Find Full Text PDFJ Clin Microbiol
December 2024
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!