Background: Considering experimental evidence that stem cells enhance myocardial regeneration and granulocyte colony-stimulating factor (G-CSF) mediates mobilization of CD34+ mononuclear blood stem cells (MNCCD34+), we tested the impact of G-CSF integrated into primary percutaneous coronary intervention (PCI) management of acute myocardial infarction in man.

Methods And Results: Fifty consecutive patients with ST-segment elevation myocardial infarction were subjected to primary PCI stenting with abciximab and followed up for 6 months; 89+/-35 minutes after successful PCI, 25 patients were randomly assigned in this pilot study (PROBE design) to receive subcutaneous G-CSF at 10 microg/kg body weight for 6 days in addition to standard care, including aspirin, clopidogrel, an ACE inhibitor, beta-blocking agents, and statins. By use of CellQuest software on peripheral blood samples incubated with CD45 and CD34, mobilized MNCCD34+ were quantified on a daily basis. With homogeneous demographics and clinical and infarct-related characteristics, G-CSF stimulation led to mobilization of MNCCD34+ to between 3.17+/-2.93 MNCCD34+/microL at baseline and 64.55+/-37.11 MNCCD34+/microL on day 6 (P<0.001 versus control); there was no indication of leukocytoclastic effects, significant pain, impaired rheology, inflammatory reactions, or accelerated restenosis at 6 months. Within 35 days, G-CSF and MNCCD34+ liberation led to enhanced resting wall thickening in the infarct zone of between 0.29+/-0.22 and 0.99+/-0.32 mm versus 0.49+/-0.29 mm in control subjects (P<0.001); under inotropic challenge with dobutamine (10 microg.kg(-1).min(-1)), wall motion score index showed improvement from 1.66+/-0.23 to 1.41+/-0.21 (P<0.004 versus control) and to 1.35+/-0.24 after 4 months (P<0.001 versus control), respectively, coupled with sustained recovery of wall thickening to 1.24+/-0.31 mm (P<0.001 versus control) at 4 months. Accordingly, resting wall motion score index improved with G-CSF to 1.41+/-0.25 (P<0.001 versus control), left ventricular end-diastolic diameter to 55+/-5 mm (P<0.002 versus control), and ejection fraction to 54+/-8% (P<0.001 versus control) after 4 months. Morphological and functional improvement with G-CSF was corroborated by enhanced metabolic activity and 18F-deoxyglucose uptake in the infarct zone (P<0.001 versus control).

Conclusions: G-CSF and mobilization of MNC(CD34+) after reperfusion of infarcted myocardium may offer a pragmatic strategy for preservation of myocardium and prevention of remodeling without evidence of aggravated restenosis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.541433DOI Listing

Publication Analysis

Top Keywords

myocardial infarction
12
acute myocardial
8
stem cells
8
preservation left
4
left ventricular
4
ventricular remodeling
4
remodeling front-integrated
4
front-integrated revascularization
4
revascularization stem
4
stem cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!