Functional magnetic resonance imaging based on a non-BOLD-contrast mechanism, which we have termed "SEEP" (Signal Enhancement by Extravascular water Protons), has previously been demonstrated. Here the reproducibility of areas of activity identified with both SEEP and BOLD contrast is assessed in duplicate experiments in healthy volunteers, with relatively high resolution (1.6 mm) image data at 1.5 T. These areas of activity are equally well localized to voxels containing primarily gray matter with the two contrast mechanisms. As in previous studies, areas of SEEP activity are observed to be immediately adjacent to areas of BOLD activity, with very little overlap. The response functions were estimated for both SEEP and BOLD contrast, and are observed to be distinct. The peak SEEP response is observed to lag the BOLD response by approximately 1 s and to decay more slowly with no poststimulus undershoot. Average BOLD signal changes (GE-EPI, TE=50 ms) were observed to be 3.4+/-1.2% (mean+/-S.D.), whereas SEEP signal changes (SE-EPI, TE=23 ms) were 1.9+/-0.5%, consistent with previous studies carried out at 0.2 and 3 T. These observations provide further support for the existence of a non-BOLD-contrast mechanism for fMRI, based on changes in extravascular spin density.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2005.07.009DOI Listing

Publication Analysis

Top Keywords

functional magnetic
8
magnetic resonance
8
resonance imaging
8
imaging based
8
non-bold-contrast mechanism
8
areas activity
8
seep bold
8
bold contrast
8
previous studies
8
signal changes
8

Similar Publications

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Background: Current evidence suggests that hippocampal subfields have partially different genetic architecture and may improve the sensitivity of the detection of Alzheimer's disease (AD). In this study, we investigated whether genetic predisposition to AD contributes to the accelerated rate of hippocampal volume atrophy across sex and AD stages and how this contribution is specifically driven by functional variants located in the APOE gene.

Methods: The study comprised 1,051 participants from ADNI cohort (75.

View Article and Find Full Text PDF

Background: Older females, particularly susceptible to Alzheimer's disease (AD), may be affected by hormonal fluctuation during life. We aim to investigate the relationship between changes in brain volume and sex steroid hormones over time. We hypothesize that levels of sex hormones (17ß-estradiol, progesterone, and testosterone) relate to changes in brain volume, especially in the hippocampus (HPC) and cerebellum (CB).

View Article and Find Full Text PDF

Background: Autosomal dominant progranulin (GRN) mutations are a common genetic cause of frontotemporal lobar degeneration. Though clinical trials for GRN-related therapies are underway, there is an unmet need for biomarkers that can predict symptom onset and track disease progression. We previously showed that presymptomatic GRN carriers exhibit thalamocortical hyperconnectivity that increases with age when they are presumably closer to symptom onset.

View Article and Find Full Text PDF

Background: Neuroinflammation is a key component of Alzheimer's Disease (AD) pathology. Triggering receptor expressed on myeloid cells 2 (TREM2) is crucial to microglial involvement in AD, mediating trem2-dependent activation and Disease-Associated Microglia (DAM) polarization. However, GWAS revealed that loss-of-function mutations of its encoding gene are an important risk factor for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!