A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. | LitMetric

Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice.

J Allergy Clin Immunol

Division of Immunology, Allergy and Rheumatology, Department of Pediatrics, The David Geffen School of Medicine at the University of California at Los Angeles, MDCC 12-430, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA.

Published: November 2005

Background: Regulatory T cells have been proposed to play an important role in regulating allergic inflammation. The transcription factor Foxp3 is a master switch gene that controls the development and function of natural and adaptive CD4(+)CD25(+) regulatory T (T(R)) cells. In human subjects loss-of-function Foxp3 mutations trigger lymphoproliferation, autoimmunity, and intense allergic inflammation in a disease termed immune dysregulation polyendocrinopathy enteropathy-X-linked syndrome.

Objective: We sought to examine the evolution and attributes of allergic inflammation in mice with a targeted loss-of-function mutation in the murine Foxp3 gene that recapitulates a known disease-causing human Foxp3 mutation.

Methods: Foxp3 mutant mice were generated by means of knock-in mutagenesis and were analyzed for histologic, immunologic, and hematologic abnormalities. The role of signal transducer and activator of transcription 6 (Stat6) in disease pathogenesis was analyzed by using Stat6 and Foxp3 double-mutant mice.

Results: Foxp3 mutant mice developed an intense multiorgan inflammatory response associated with allergic airway inflammation, a striking hyperimmunoglobulinemia E, eosinophilia, and dysregulated T(H)1 and T(H)2 cytokine production in the absence of overt T(H)2 skewing. Concurrent Stat6 deficiency reversed the hyperimmunoglobulinemia E and eosinophilia and delayed mortality, which is consistent with a pathogenic role for allergic inflammation in Foxp3 deficiency.

Conclusion: Allergic dysregulation is a common and fundamental consequence of loss of CD4(+)CD25(+) T(R) cells caused by Foxp3 deficiency in different species. Abnormalities affecting T(R) cells might contribute to a variety of allergic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2005.08.046DOI Listing

Publication Analysis

Top Keywords

allergic inflammation
16
foxp3 mutant
12
mutant mice
12
foxp3
10
allergic
8
allergic dysregulation
8
regulatory cells
8
hyperimmunoglobulinemia eosinophilia
8
inflammation
5
dysregulation hyperimmunoglobulinemia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!