Pb(II)-binding capability of aminohydroxamic acids: primary hydroxamic acid derivatives of alpha-amino acids as possible sequestering agents for Pb(II).

J Inorg Biochem

Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, H-4010 Debrecen, Hungary.

Published: January 2006

Complexes of aminohydroxamic acids, D,L-alpha-alaninehydroxamic acid (alpha-Alaha), sarcosinehydroxamic acid (Sarha), D,L-N-methyl-alpha-alaninehydroxamic acid (N-Me-alpha-Alaha), beta-alaninehydroxamic (beta-Alaha), L-aspartic acid-beta-hydroxamic acid (Asp-beta-ha), L-glutamic acid-gamma-hydroxamic acid (Glu-gamma-ha) and L-histidinehydroxamic acid (Hisha) with lead(II) in aqueous solution were studied by pH-potentiometric, 1H NMR and electrospray ionization mass spectrometric (ESI MS) methods. The results were compared to those of a simple monohydroxamic acid, acetohydroxamic acid and the effects of the amino group, hydroxamate-N, as well as, additional side chain donors on the co-ordination mode and on the stability of the complexes formed were evaluated. It was found that the amino nitrogen atom situating in beta- or in gamma-position (beta-Alaha, Asp-beta-ha, Glu-gamma-ha) does not co-ordinate to Pb(II), only hydroxamate type chelates are formed before the hydrolytic processes. However, the amino-N in alpha-position (alpha-Alaha, Sarha, Hisha) seems to form a stable 5-membered (N,N)-type chelate together with the deprotonated hydroxamate-N above pH 6. On the other hand, the hydroxamate (O,O)-type chelate also exists. Since steric reasons do not allow the coordination of these two chelates of a molecule to the same Pb(II) ion, polynuclear complexes with mixed co-ordination modes are formed with the alpha-derivatives above pH 6. Simple hydroxamate type complexes are formed with N-Me-alpha-Alaha, where the hydroxamate-N is not able to co-ordinate. The co-ordination of the side chain imidazole of Hisha is not measurable, while a weak interaction of the side chain carboxylates of Asp-beta-ha and especially of Glu-gamma-ha can be suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2005.09.009DOI Listing

Publication Analysis

Top Keywords

side chain
12
acid
9
aminohydroxamic acids
8
complexes formed
8
asp-beta-ha glu-gamma-ha
8
hydroxamate type
8
pbii-binding capability
4
capability aminohydroxamic
4
acids primary
4
primary hydroxamic
4

Similar Publications

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.

Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.

View Article and Find Full Text PDF

Methyl side-groups control the 3̄ phase in core-non-symmetric aryloyl-hydrazine-based molecules.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.

Control of the formation of liquid crystalline 3̄ gyroid phases and their nanostructures is critical to advance materials chemistry based on the structural feature of three-dimensional helical networks. Here, we present that introducing methyl side-group(s) and slight non-symmetry into aryloyl-hydrazine-based molecules is unexpectedly crucial for their formation and can be a new design strategy through tuning intermolecular interactions: the two chemical modifications in the core portion of the chain-core-chain type molecules effectively lower and extend the 3̄ phase temperature ranges with the increased twist angle between neighboring molecules along the network. The detailed analyses of the aggregation structure revealed the change in the core assembly mode from the double-layered core mode of the mother molecule (without methyl groups) to the single-layered core mode.

View Article and Find Full Text PDF

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

Many applications of enzymes benefit from activity on structurally diverse substrates. Here, we sought to engineer the decarboxylative aldolase UstD to perform a challenging C-C bond forming reaction with ketone electrophiles. The parent enzyme had only low levels of activity, portending multiple rounds of directed evolution and a possibility that mutations may inadvertently increase the specificity of the enzyme for a single model screening substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!