Although it has long been established that estrogen alters circadian rhythms in behavior, physiology, and reproductive functions in mammals, the molecular mechanism for these effects remains unknown. To explore the possibility that estrogen affects circadian rhythms by changing the expression of clock-related genes, we investigated the effects of chronic treatment with 17beta-estradiol (E2) on the expression of Per1 and Per2 genes in the brain (suprachiasmatic nucleus and cerebral cortex) and periphery (liver, kidney, and uterus) of ovariectomized rats by means of in situ hybridization and northern blotting. In the brain, E2 treatment advanced the peak of Per2 mRNA expression in the SCN; however, it failed to affect the rhythm of Per2 mRNA expression in the CX and Per1 mRNA expression in both the SCN and the CX. In nonreproductive peripheral tissues (liver and kidney), E2 delayed the phase and increased the amplitude of Per1 mRNA expression. In the reproductive tissues (uterus), biphasic rhythms in Per1 and Per2 mRNA were observed after E2 treatment. These findings suggest that the effects of estrogen are different between central and peripheral clock in the brain, and between reproductive and nonreproductive tissues in the periphery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20677 | DOI Listing |
Front Oncol
January 2025
Gynecologic Oncology Section, Stephenson Cancer Center, Obstetrics and Gynecology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
Background/objectives: Patients with ovarian cancer commonly experience metastases and recurrences, which contribute to high mortality. Our objective was to better understand ovarian cancer metastasis and identify candidate biomarkers and drug targets for predicting and preventing ovarian cancer recurrence.
Methods: Transcripts of 770 cancer-associated genes were compared in cells collected from ascitic fluid versus resected tumors of an ES-2 orthotopic ovarian cancer mouse model.
Int J Genomics
January 2025
Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
() is associated with the development of various stomach diseases, one of the major risk factors for stomach adenocarcinoma (STAD). The infection score between tumor and normal groups was compared by single-sample gene set enrichment analysis (ssGSEA). The key modules related to infection were identified by weighted gene coexpression network analysis (WGCNA), and functional enrichment analysis was conducted on these module genes.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction.
View Article and Find Full Text PDFBMJ Oncol
December 2023
Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.
Objective: Vaccinated patients with cancer in follow-up studies showed a high seropositivity rate but impaired antibody titres and T cell responses following mRNA vaccine against COVID-19. Besides clinical characteristics and the type of anticancer treatment before vaccination, the identification of patients susceptible to non-response following vaccination using immunological markers is worth to be investigated.
Methods And Analysis: All patients (n=138, solid cancers) were included in the CACOV-VAC Study comprising three cohorts ((neo)-adjuvant, metastatic and surveillance).
Ann Neurosci
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
Background: Stroke is one of the leading causes of death and long-term adult disability worldwide. Stroke causes neurodegeneration and impairs synaptic function. Understanding the role of synaptic proteins and associated signalling pathways in stroke pathology could offer insights into therapeutic approaches as well as improving rehabilitation-related treatment regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!