Periodic pulses of the insect steroid molting hormone 20-hydroxyecdysone (20E), acting via its nuclear receptor complex (EcR/USP), control gene expression at many stages throughout Drosophila development. However, during the last larval instar of some lepidopteran insects, subtle changes in titers of ecdysteroids have been documented, including the so-called "commitment peak." This small elevation of 20E reprograms the larva for metamorphosis to the pupa. Similar periods of ecdysteroid immunoreactivity have been observed during the last larval instar of Drosophila. However, due to low amplitude and short duration, along with small body size and staging difficulties, their timing and ecdysteroid composition have remained uncertain. Employing a rigorous regimen of Drosophila culture and a salivary gland reporter gene, Sgs3-GFP, we used RP-HPLC and differential ecdysteroid RIA analysis to determine whole body titers of 20E during the last larval instar. Three small peaks of 20E were observed at 8, 20, and 28 hr following ecdysis, prior to the well-characterized large peak around the time of pupariation. The possible regulation of 20E levels by biosynthetic P450 enzymes and the roles of these early peaks in coordinating gene expression and late larval development are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613944 | PMC |
http://dx.doi.org/10.1002/dvdy.20626 | DOI Listing |
PLoS One
January 2025
Department of Biology, University of Padova, Padova, Italy.
The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.
View Article and Find Full Text PDFMethodsX
June 2025
Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
The entomopathogenic nematodes (EPNs) Steinernema carpocapsae and Steinernema hermaphroditum can efficiently infect the fruit fly, Drosophila melanogaster. The EPN infective juvenile (IJ) stage is the free-living and non-feeding stage that seeks out suitable insects to infect. While previous studies have described successful infection of melanogaster larvae with a standard amount of 100 IJs, the pathogenicity of a single IJ nematode towards insects remains poorly understood.
View Article and Find Full Text PDFBull Entomol Res
January 2025
College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China.
The Asian corn borer, (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required.
View Article and Find Full Text PDFJ Med Entomol
January 2025
Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
Myiasis is a parasitic infestation of soft vertebrate tissues by larval stages of Diptera. We briefly described the lesion-causing genus Cordylobia Grünberg (Diptera: Calliphoridae). Three Polish travelers to Uganda, Gambia, and Senegal returned with furuncular myiasis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Immunology Laboratory (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
Sertraline, a selective serotonin reuptake inhibitor (SSRI), is commonly used to treat various psychiatric disorders such as depression and anxiety due to its ability to increase serotonin availability in the brain. Recent findings suggest that sertraline may also influence the expression of genes related to synaptic plasticity and neuronal signaling pathways. Alternative splicing, a process that allows a single gene to produce multiple protein isoforms, plays a crucial role in the regulation of neuronal functions and plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!