The beta-barrel and beta-helix formation, as in porins and gramicidin, respectively, represent two distinct mechanisms for ion channel formation by beta-sheet proteins in membranes. The design of beta-barrel proteins is difficult due to incomplete understanding of the basic principles of folding. The design of gramicidin-like beta-helix relies on an alternating pattern of L- and D-amino acid sequences. Recently we noticed that a short beta-sheet peptide (xSxG)(6), can form porin-like channels via self-association in membranes. Here, we proposed that glycine to D-alanine substitutions of the N-formyl-(xSxG)(6) would transform the porin-like channel into a gramicidin-like beta(12)-helical channel. The requirement of an N-formyl group for channel activity, impermeability to cations with a diameter >4 A, high monovalent cation selectivity, and the absence of either voltage gating or subconductance states upon D-alanine substitution support the idea of a gramicidin-like channel. Moreover, the circular dichroism spectrum in membranes is different, indicating a change in regular beta-sheet backbone structure. The conversion of a complex porin-like channel into a gramicidin-like channel provides a link between two different mechanisms of beta-sheet channel formation in membranes and emphasizes the importance of glycine and D-amino acid residues in protein folding and function and in the engineering of ion channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367119 | PMC |
http://dx.doi.org/10.1529/biophysj.105.072751 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!