The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus.

Microbiology (Reading)

Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.

Published: November 2005

The FliX/FlbD-dependent temporal transcription of late flagellar genes in Caulobacter crescentus requires the assembly of an early, class II-encoded flagellar structure. Class II flagellar-mutant strains exhibit a delay in the completion of cell division, with the accumulation of filamentous cells in culture. It is shown here that this cell-division defect is attributable to an arrest in the final stages of cell separation. Normal cell morphology could be restored in class II mutants by gain-of-function alleles of FliX or FlbD, suggesting that the timely completion of cell division requires these trans-acting factors. In synchronized cultures, inhibition of cell division by depleting FtsZ resulted in normal initial expression of the late, FlbD-dependent fliK gene; however, the cell cycle-regulated cessation of transcription was delayed, indicating that cell division may be required to negatively regulate FlbD activity. Interestingly, prolonged depletion of FtsZ resulted in an eventual loss of FlbD activity that could be bypassed by a constitutive mutant of FlbD, but not of FliX, suggesting the possible existence of a second cell cycle-dependent pathway for FlbD activation.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.28174-0DOI Listing

Publication Analysis

Top Keywords

cell division
16
flix flbd
8
caulobacter crescentus
8
cell
8
completion cell
8
flbd activity
8
flbd
6
trans-acting flagellar
4
flagellar regulatory
4
regulatory proteins
4

Similar Publications

The incidence of keratinocyte carcinoma (KC) is rising globally, significantly burdening healthcare resources. Treatment options include medical treatment, non-invasive procedures, and surgery, each associated with their distinct benefits and risks. With advanced treatment, the procedures become increasingly invasive for the patients and expensive for the society.

View Article and Find Full Text PDF

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS immune sensing.

PLoS Pathog

January 2025

Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.

Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.

Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!