Chronic beryllium disease (CBD) is characterized by a CD4+ T cell alveolitis and granulomatous inflammation in the lung. Genetic susceptibility to this disease has been linked with HLA-DP alleles, particularly those possessing a glutamic acid at position 69 (Glu69) of the beta-chain. However, 15% of CBD patients do not possess a Glu69-containing HLA-DP allele, suggesting that other MHC class II alleles may be involved in disease susceptibility. In CBD patients without a Glu69-containing HLA-DP allele, an increased frequency of HLA-DR13 alleles has been described, and these alleles possess a glutamic acid at position 71 of the beta-chain (which corresponds to position 69 of HLA-DP). Thus, we hypothesized that beryllium presentation to CD4+ T cells was dependent on a glutamic acid residue at the identical position of both HLA-DP and -DR. The results show that HLA-DP Glu69- and HLA-DR Glu71-expressing molecules are capable of inducing beryllium-specific proliferation and IFN-gamma expression by lung CD4+ T cells. Using fibroblasts expressing mutated HLA-DP2 and -DR13 molecules, beryllium recognition was dependent on the glutamic acid at position 69 of HLA-DP and 71 of HLA-DR, suggesting a critical role for this amino acid in beryllium presentation to Ag-specific CD4+ T cells. Thus, these results demonstrate that a single amino acid residue of the MHC class II beta-chain dictates beryllium presentation and potentially, disease susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.10.7029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!