In vitro human monocyte differentiation to macrophages or dendritic cells (DCs) is driven by GM-CSF or GM-CSF and IL-4, respectively. IFN regulatory factors (IRFs), especially IRF1 and IRF8, are known to play essential roles in the development and functions of macrophages and DCs. In the present study, we performed cDNA microarray and Northern blot analyses to characterize changes in gene expression of selected genes during cytokine-stimulated differentiation of human monocytes to macrophages or DCs. The results show that the expression of IRF4 mRNA, but not of other IRFs, was specifically up-regulated during DC differentiation. No differences in IRF4 promoter histone acetylation could be found between macrophages and DCs, suggesting that the gene locus was accessible for transcription in both cell types. Computer analysis of the human IRF4 promoter revealed several putative STAT and NF-kappaB binding sites, as well as an IRF/Ets binding site. These sites were found to be functional in transcription factor-binding and chromatin immunoprecipitation experiments. Interestingly, Stat4 and NF-kappaB p50 and p65 mRNAs were expressed at higher levels in DCs as compared with macrophages, and enhanced binding of these factors to their respective IRF4 promoter elements was found in DCs. IRF4, together with PU.1, was also found to bind to the IRF/Ets response element in the IRF4 promoter, suggesting that IRF4 protein provides a positive feedback signal for its own gene expression in DCs. Our results suggest that IRF4 is likely to play an important role in myeloid DC differentiation and gene regulatory functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.10.6570 | DOI Listing |
bioRxiv
September 2024
Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
FOXP3 is a lineage-defining transcription factor that controls differentiation and maintenance of suppressive function of regulatory T cells (Tregs). Foxp3 is exclusively expressed in Tregs in mice. However, in humans, FOXP3 is not only constitutively expressed in Tregs; it is also transiently expressed in stimulated CD4+CD25- conventional T cells (Tconvs).
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA.
Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM).
View Article and Find Full Text PDFFront Immunol
August 2024
Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States.
The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features.
View Article and Find Full Text PDFDev Comp Immunol
June 2024
Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China; State Key Laboratory of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China. Electronic address:
Tilapia lake virus (TiLV) is an emerging virus that seriously threatens the tilapia industries worldwide. Interferon regulatory factors (IRFs), which are the crucial mediators regulating the response of interferon (IFN) to combat invading viruses, have not yet been reported in tilapia during TiLV infection. Here, six IRF (IRF1, IRF2, IRF4, IRF7, IRF8, and IRF9) homologs from tilapia were characterized and analyzed.
View Article and Find Full Text PDFImmunogenetics
April 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!