The PANK2 gene encodes the human pantothenate kinase 2 protein isoforms, and PANK2 mutations are linked to pantothenate kinase-associated neurodegeneration. Two PanK2 protein forms are proteolytically processed to form a mitochondrially localized, mature PanK2. Another isoform arose from a proposed initiation at a leucine codon and was not processed further. The fifth isoform was postulated to arise from an alternative splicing event and was found to encode an inactive protein. Fourteen mutant PanK2 proteins with single amino acid substitutions, associated with either early or late onset disease, were evaluated for activity. The PanK2(G521R), the most frequent mutation in pantothenate kinase-associated neurodegeneration, was devoid of activity and did not fold properly. However, nine of the mutant proteins associated with disease possessed catalytic activities that were indistinguishable from wild type, including the frequently encountered PanK2(T528M) missense mutation. PanK2 was extremely sensitive to feedback inhibition by CoA thioesters (IC50 values between 250 and 500 nM), and the regulation of the active PanK2 mutants was comparable with that of the wild-type protein. Coexpression of the PanK2(G521R) and wild-type PanK2 did not interfere with wild-type enzyme activity, arguing against a dominant negative effect of the PanK2(G521R) mutation in heterozygous patients. These data described the unique biochemical features of the PanK2 isoforms and suggested that catalytic defects may not be the sole cause for the neurodegenerative phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M508825200DOI Listing

Publication Analysis

Top Keywords

pantothenate kinase-associated
12
kinase-associated neurodegeneration
12
pank2
9
human pantothenate
8
pantothenate kinase
8
mutations linked
8
linked pantothenate
8
neurodegeneration pank2
8
pantothenate
5
biochemical properties
4

Similar Publications

Glymphatic system in Pantothenase kinase associated neurodegeneration (PKAN).

Parkinsonism Relat Disord

February 2025

Department of Neurology, CEDIMAT, Santo Domingo, Dominican Republic. Electronic address:

Purpose: To investigate if accumulation of iron in the globus pallidus as seen in patients suffering from Pantothenase Kinase Associated Neurodegeneration (PKAN), is related to damage of the cerebral glymphatic system.

Material And Methods: In a group of 24 patients and an age-matched control group, functionality of the glymphatic system was assessed by the index of Analysis aLong the Perivascular Space (ALPS) from Diffusion Tensor Imaging data and correlated to the values of the T2∗ Times of the globus pallidus and the cerebral white matter measured by a Fast Field Echo sequence.

Results: In spite of the important reduction of the T2∗ Time of the globus pallidus, ALPS values of patients and controls were very similar and did not correlate to T2∗Time values in either group.

View Article and Find Full Text PDF

Pathology and treatment methods in pantothenate kinase-associated neurodegeneration.

Postep Psychiatr Neurol

September 2024

Independent Public Health Care Institution named after doctor Kazimierz Hołoga, Nowy Tomyśl, Poland.

Purpose: The purpose of this review is to present current scientific reports on the pathophysiology, diagnosis and treatment of pantothenate kinase-associated neurodegeneration (PKAN).

Views: The condition is caused by a mutation in the PANK2 gene, which results in iron accumulation in the brain and changes in the functioning of biochemical pathways dependent on coenzyme A. There are two clinical types of PKAN, which differ in the time of onset of symptoms and speed of disease progression.

View Article and Find Full Text PDF
Article Synopsis
  • * The diagnosis of PKAN relies on clinical observations, a specific brain MRI finding called the "eye of the tiger," and genetic testing for mutations in the pantothenate kinase 2 (PANK2) gene, which plays a crucial role in coenzyme A (CoA) production.
  • * Research shows that combining multitarget supplements (like pantothenate, pantethine, omega-3, and vitamin E) with standard
View Article and Find Full Text PDF

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive hereditary neurodegenerative disorder, usually caused by mutations in the pantothenate kinase 2 (PANK2) gene. We report a young female patient with atypical PKAN, harboring a novel heterozygous PANK2 mutation, diagnosed through clinical imaging and genetic analysis. The patient presented with dystonia and motor dysfunction after onset, but early brain MRI showed normal findings.

View Article and Find Full Text PDF

Patient Selection for Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration.

Tremor Other Hyperkinet Mov (N Y)

October 2024

Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA.

Clinical Vignette: A 23-year-old woman with pantothenate kinase-associated neurodegeneration (PKAN) presented with medication-refractory generalized dystonia and an associated gait impairment.

Clinical Dilemma: Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) can be an effective treatment for dystonia. However, outcomes for PKAN DBS have been variable and there are no standardized criteria for patient selection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!