Innate immunity is critical for sensing and defending against microbial infections in multicellular organisms. In plants, disease resistance genes (R genes) play central roles in recognizing pathogens and initiating downstream defense cascades. Arabidopsis SNC1 encodes a TIR-NBS-LRR-type R protein with a similar structure to nucleotide binding oligomerization domain (Nod) proteins in animals. A point mutation in the region between the NBS and LRR of SNC1 results in constitutive activation of defense responses in the snc1 mutant. Here, we report the identification and characterization of mos2-1, a mutant suppressing the constitutive defense responses in snc1. Analysis of mos2 single mutants indicated that it is not only required for resistance specified by multiple R genes, but also for basal resistance. Map-based cloning of MOS2 revealed that it encodes a novel nuclear protein that contains one G-patch and two KOW domains and has homologs across the animal kingdom. The presence of both G-patch and KOW domains in the MOS2 protein suggests that it probably functions as an RNA binding protein critical for plant innate immunity. Our discovery on the biological functions of MOS2 will shed light on functions of the MOS2 homologs in animals, where they may also play important roles in innate immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2005.09.038 | DOI Listing |
Int J Nanomedicine
January 2025
Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea.
Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating from microorganisms that act as ligands for pattern recognition receptors (PRRs), which are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce potent immune activation and provide broad-spectrum protection against microbes. Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and induces their surface modification.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
Bacterial infections can substantially impact host metabolic health as a result of the direct and indirect demands of sustaining an immune response and of nutrient piracy by the pathogen itself. Drosophila melanogaster and other insects that survive a sublethal bacterial infection often carry substantial pathogen burdens for the remainder of life. In this study, we asked whether these chronic infections exact metabolic costs for the host, and how these costs scale with the severity of chronic infection.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Pathogenic Biology, Key Laboratory of Infection and Immunity of Shandong Province, and Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. Electronic address:
Cellular microenvironments critically control the activation of innate immune responses. N-chlorotaurine (Tau-Cl) is an endogenous metabolite that is markedly produced and secreted during pathogenic invasion. However, its effect on the antiviral innate immune responses remains unclear.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:
The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!