Background: Stress-enhanced platelet (PLT) storage lesions include increased glycolysis, discoid-to-sphere morphology change, and spontaneous PLT activation. It is not clear if reduction in glycolysis can alleviate storage lesion development.

Study Design And Methods: Apheresis PLT concentrates were exposed to 17.2 J/mL UV light and 50 microM riboflavin, followed by storage with various concentrations of 2-deoxyglucose (2-DOG) for 5 days. The control had no UV or 2-DOG exposure.

Results: Lactate production and glucose consumption were increased significantly to 0.1371 +/- 0.0281 and 0.0724 +/- 0.0151 mmol per 10(12) cells per hour for UV-treated PLTs, respectively, when compared to control samples. UV treatment induced a decline in pH to 6.55 +/- 0.26 for treated PLTs on Day 5, hypotonic shock response (HSR) 33 +/- 25 percent, extent of shape change (ESC) to 3.8 +/- 3.6 percent, swirl 1.0 +/- 1.0 and increased P-selectin expression 85.2 +/- 9.4 percent. Addition of 2-DOG up to 20 mmol per L significantly reduced lactate production to 0.0515 +/- 0.0045 mmol per 10(12) cells per hour (p < 0.05) and glucose consumption to 0.0293 +/- 0.0060 mmol per 10(12) cells per hour and increased pH to 7.35 +/- 0.09 in a dose-dependent manner. 2-DOG, however, had no effects on HSR, ESC, swirl, and P-selectin expression. Furthermore, an exaggeration of UV-stressed PLT aggregation by addition of 2-DOG was also observed.

Conclusions: Increased glycolytic flux is not a direct cause for PLT morphology change and spontaneous activation during storage lesion development. Reduction of glucose utilization may increase PLT loss during storage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1537-2995.2005.00582.xDOI Listing

Publication Analysis

Top Keywords

mmol 1012
12
1012 cells
12
cells hour
12
+/- percent
12
+/-
10
glycolytic flux
8
morphology change
8
change spontaneous
8
storage lesion
8
lactate production
8

Similar Publications

Pore-Controllable Synthesis of Phthalic Acid-Derived Hierarchical Activated Carbon for Dilute CO Capture.

Inorg Chem

December 2024

Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.

Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.

View Article and Find Full Text PDF

Honey is a sweet syrup mixture substance produced by honey bees. Contradictory results have been reported on the influence of organic and conventional beekeeping on the properties of honey. The aim of this research was to determine the potential difference between organically and conventionally produced honey of the same botanical origin (linden, acacia, chestnut, meadow).

View Article and Find Full Text PDF

For the first time an electrochemical sensor based on nanomaterial-supported molecularly imprinted polymers (MIPs) is applied to the sensitive and specific determination of chloroquine phosphate (CHL). The sensor was produced using an electropolymerization (EP) approach, and it was formed on a glassy carbon electrode (GCE) using CHL as a template and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and aniline (ANI) as functional monomers. Incorporating Prussian blue polyethyleneglycol-amine nanoparticles (PB@PEG-NH) in the MIP-based electrochemical sensor increased the active surface area and porosity.

View Article and Find Full Text PDF

It is not clear if fat oxidation is attenuated at higher exercise intensities, when exercising with a small muscle mass, and therefore, we studied leg fat oxidation during graded one-leg exercise. Ten males (age: 27 ± 2 years, body mass: 82 ± 3 kg, BMI: 24 ± 1 kg m, V̇O: 49 ± 2 mL min kg) performed one-leg exercise at 25% of maximal workload (W) for 30 min, followed by 120-min exercise at 55% W with the contralateral leg, and finally 30-min exercise at 85% W with the first leg. Blood was sampled from an artery and both femoral veins, and blood flow was determined using Doppler ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!