Transcription factors play an essential role in regulating both cell proliferation and programmed cell death. Proliferation and apoptosis-related transcription factor immunoexpression patterns were concomitantly investigated in tissue sections of normal thyroid, goiters, follicular adenomas and well-differentiated papillary and follicular carcinomas using antibodies against prothymosin alpha, E2F-1, p53, Bcl2, and Bax proteins. Proliferation and apoptotic indices were determined by Ki-67 immunoreactivity and the terminal deoxynucleotidyl transferase-mediated deoxy uridine triphosphate nick-end labeling technique, respectively. Prothymosin alpha and E2F-1 immunoexpression levels were found to be significantly elevated in well-differentiated carcinomas compared to adenomas, goiters and normal tissues (P < 0.05). Both proteins were directly correlated with the proliferation index (P < 0.05). E2F-1 was additionally correlated with the apoptotic index (P < 0.05). The majority of cases were negative for p53 staining. Positive Bcl2 immunostaining was detected in all thyroid histotypes. None of the normal tissues showed Bax immunoreactivity, while positive accumulation differed significantly between hyperplastic and neoplastic histotypes. Direct correlations were observed between prothymosin alpha and Bcl2 as well as between E2F-1 and Bax immunoexpression (P < 0.05). These data demonstrate that prothymosin alpha and E2F-1 are strongly involved in the proliferation processes of thyroid neoplasias. Furthermore, prothymosin alpha may promote cell survival through the Bcl2 anti-apoptotic pathway, while E2F-1-induced apoptosis via p53-independent pathways may be associated with transcriptional activation of bax pro-apoptotic gene.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1827.2005.01899.xDOI Listing

Publication Analysis

Top Keywords

prothymosin alpha
20
alpha e2f-1
12
normal tissues
8
proliferation
6
prothymosin
5
alpha
5
e2f-1
5
transcription factor-mediated
4
factor-mediated proliferation
4
proliferation apoptosis
4

Similar Publications

The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration () decreases sharply until about 1.

View Article and Find Full Text PDF

Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation.

Biomolecules

November 2024

Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany.

Article Synopsis
  • The study focuses on the interaction between the positively charged linker histone H1 and the negatively charged chaperone prothymosin α (ProTα), highlighting their strong binding in physiological conditions.
  • The analysis employs a thermodynamic model that considers the influence of counterion release and hydration on the complex formation.
  • The findings reveal that the binding energy is primarily driven by the release of counterions from ProTα, while changes in water interactions and conformational constraints contribute to a significant negative change in free energy.
View Article and Find Full Text PDF

Conformations and dynamics of an intrinsically disordered protein (IDP) depend on its composition of charged and uncharged amino acids, and their specific placement in the protein sequence. In general, the charge (positive or negative) on an amino acid residue in the protein is not a fixed quantity. Each of the ionizable groups can exist in an equilibrated distribution of fully ionized state (monopole) and an ion-pair (dipole) state formed between the ionizing group and its counterion from the background electrolyte solution.

View Article and Find Full Text PDF

Circular RNA COL1A1 promotes Warburg effect and tumor growth in nasopharyngeal carcinoma.

Discov Oncol

April 2024

Department of Otolaryngology, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.

Objective: Circular RNAs (circRNAs), pivotal in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), remain a significant point of investigation for potential therapeutic interventions. Our research was driven by the objective to decipher the roles and underlying mechanisms of hsa_circ_0044569 (circCOL1A1) in governing the malignant phenotypes and the Warburg effect in NPC.

Methods: We systematically collected samples from NPC tissues and normal nasopharyngeal epithelial counterparts.

View Article and Find Full Text PDF

Effect of prothymosin α on neuroplasticity following cerebral ischemia‑reperfusion injury.

Mol Med Rep

April 2024

Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan, R.O.C.

Prothymosin α (ProT), a highly acidic nuclear protein with multiple cellular functions, has shown potential neuroprotective properties attributed to its anti‑necrotic and anti‑apoptotic activities. The present study aimed to investigate the beneficial effect of ProT on neuroplasticity after ischemia‑reperfusion injury and elucidate its underlying mechanism of action. Primary cortical neurons were either treated with ProT or overexpressing ProT by gene transfection and exposed to oxygen‑glucose deprivation for 2 h .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!