Image inhomogeneity related to high radiofrequencies is one of the major challenges for high field imaging. This inhomogeneity can be thought of as having 2 radiofrequency-field related contributors: the transmit field distribution and the reception field distribution. Adjusting magnitude and phase of currents in elements of a transmit array can significantly improve flip angle homogeneity at high field. Effective application of some well-known parallel imaging and other receive array post-processing methods removes receptivity patterns from the intensity distribution in the final image, though noise then becomes a function of position in the final image. Here simulations are used to show that, assuming high signal-to-noise ratio, very homogeneous images in the human head can be acquired with the combination of transmit arrays and some receive array reconstruction methods at frequencies as high as 600 MHz.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.20729DOI Listing

Publication Analysis

Top Keywords

receive array
12
transmit arrays
8
arrays receive
8
array reconstruction
8
reconstruction methods
8
homogeneous images
8
high field
8
field distribution
8
final image
8
high
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!