We investigated the mechanism by which a GnRH agonist (GnRHa) affects ovarian vascularity, vascular permeability, and expression of the tight junction protein claudin-5 in a rat model of ovarian hyperstimulation syndrome (OHSS). Hyperstimulated rats received excessive doses of pregnant mare serum gonadotropin (PMSG; 50 IU/d) for 4 consecutive days, from d 25 to 28 of life, followed by 25 IU human chorionic gonadotropin (hCG) on d 29. Control rats received 10 IU PMSG on d 27 of life, followed by 10 IU hCG on d 29. GnRHa (leuprolide 100 microg/kg.d) was administered to some hyperstimulated rats either on d 29 and 30 (short-term GnRHa treatment) or from d 25 to 30 (long-term GnRHa treatment). Ovarian vascular density (vessels per 10 mm(2)) and vessel endothelial area (percent) were assessed by immunohistochemical analysis of the distribution of von Willebrand factor, whereas vascular permeability was evaluated based on leakage of Evans blue. High doses of PMSG and hCG significantly increased ovarian weight, vascular permeability, vascular density, and the vessel endothelial area and significantly reduced expression of claudin-5 protein and mRNA. All of these effects were significantly and dose-dependently inhibited by administration of GnRHa. This suggests that reduced expression of claudin-5 plays a crucial role in the increased ovarian vascular permeability seen in OHSS and that its expression can be modulated by GnRHa treatment. Indeed, preventing redistribution of tight junction proteins in endothelial cells and the resultant loss of endothelial barrier architecture might be the key to protecting patients against massive extravascular fluid accumulation in cases of OHSS.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2005-0700DOI Listing

Publication Analysis

Top Keywords

vascular permeability
20
ovarian vascular
12
tight junction
12
gnrha treatment
12
expression tight
8
junction protein
8
protein claudin-5
8
hyperstimulated rats
8
rats received
8
vascular density
8

Similar Publications

Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a clinically common disease with high mortality, characterized by tissue damage caused by excessive activation of inflammation. TRIM7 is an E3 ligase that plays an important role in regulating viral infection, tumor progression and innate immune response. But its function in ALI is unclear.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!