Specific retinoid X receptor (RXR) agonists, such as LG100268 (LG268), and the thiazolidinedione (TZD) PPARgamma agonists, such as rosiglitazone, produce insulin sensitization in rodent models of insulin resistance and type 2 diabetes. In sharp contrast to the TZDs that produce significant increases in body weight gain, RXR agonists reduce body weight gain and food consumption. Unfortunately, RXR agonists also suppress the thyroid hormone axis and generally produce hypertriglyceridemia. Heterodimer-selective RXR modulators have been identified that, in rodents, retain the metabolic benefits of RXR agonists with reduced side effects. These modulators bind specifically to RXR with high affinity and are RXR homodimer partial agonists. Although RXR agonists activate many heterodimer partners, these modulators selectively activate RXR:PPARalpha and RXR:PPARgamma, but not RXR:RARalpha, RXR:LXRalpha, RXR:LXRbeta, or RXR:FXRalpha. We report the in vivo characterization of one RXR modulator, LG101506 (LG1506). In Zucker fatty (fa/fa) rats, LG1506 is a potent insulin sensitizer that also enhances the insulin-sensitizing activities of rosiglitazone. Administration of LG1506 reduces both body weight gain and food consumption and blocks the TZD-induced weight gain when coadministered with rosiglitazone. LG1506 does not significantly suppress the thyroid hormone axis in rats, nor does it elevate triglycerides in Sprague Dawley rats. However, LG1506 produces a unique pattern of triglycerides elevation in Zucker rats. LG1506 elevates high-density lipoprotein cholesterol in humanized apolipoprotein A-1-transgenic mice. Therefore, selective RXR modulators are a promising approach for developing improved therapies for type 2 diabetes, although additional studies are needed to understand the strain-specific effects on triglycerides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2005-0690 | DOI Listing |
Biomedicines
December 2024
A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
The changes in the level of small GTPase ARL4C are associated with the initiation and progression of many different cancers. The content of ARL4C varies greatly between different tissues, and the induction of ARL4C expression leads to changes in cell morphology and proliferation. Although ARL4C can bind alpha-tubulin and affect intracellular transport, the role of ARL4C in the functioning of the tubulin cytoskeleton remained unclear.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
Evidence that myelin repair is crucial for functional recovery in multiple sclerosis (MS) led to the identification of bexarotene (BXT). This clinically promising remyelinating agent activates multiple nuclear hormone receptor subtypes implicated in myelin repair. However, BXT produces unacceptable hyperlipidemia.
View Article and Find Full Text PDFmedRxiv
December 2024
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA.
PLoS One
November 2024
HPIG, Ruminant Medicine Unit, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Non-steroidal anti-inflammatory drugs (NSAID) are not recommended for use against pneumonia in humans, but are commonly utilised against bovine respiratory disease. This study aimed to determine if the use of NSAIDs in the early phase of bovine respiratory syncytial virus (BRSV)-infection limits pulmonary inflammation. Four to nine-week old calves were infected with BRSV by aerosol and were treated with either meloxicam intravenously on day (D)4 (n = 5, MEL), acetylsalicylat-DL-lysin intravenously on D4 and D5 (n = 5, ASA), or were left untreated as controls (n = 5, CTR).
View Article and Find Full Text PDFJ Adv Res
October 2024
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China. Electronic address:
Introduction: The farnesoid X receptor (FXR) is a crucial regulator in the intestine, maintaining bile acid homeostasis. Inhibiting intestinal FXR shows promise in managing inflammatory bowel and liver diseases by reducing bile acid accumulation. Additionally, changes in FXR expression could serve as a potential biomarker for intestinal diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!