Background: Regulatory functions of nitric oxide (NO*) that bypass the second messenger cGMP are incompletely understood. Here, cGMP-independent effects of NO* on gene expression were globally examined in U937 cells, a human monoblastoid line that constitutively lacks soluble guanylate cyclase. Differentiated U937 cells (>80% in G0/G1) were exposed to S-nitrosoglutathione, a NO* donor, or glutathione alone (control) for 6 h without or with dibutyryl-cAMP (Bt2cAMP), and then harvested to extract total RNA for microarray analysis. Bt2cAMP was used to block signaling attributable to NO*-induced decreases in cAMP.

Results: NO* regulated 110 transcripts that annotated disproportionately to the cell cycle and cell proliferation (47/110, 43%) and more frequently than expected contained AU-rich, post-transcriptional regulatory elements (ARE). Bt2cAMP regulated 106 genes; cell cycle gene enrichment did not reach significance. Like NO*, Bt2cAMP was associated with ARE-containing transcripts. A comparison of NO* and Bt2cAMP effects showed that NO* regulation of cell cycle genes was independent of its ability to interfere with cAMP signaling. Cell cycle genes induced by NO* annotated to G1/S (7/8) and included E2F1 and p21/Waf1/Cip1; 6 of these 7 were E2F target genes involved in G1/S transition. Repressed genes were G2/M associated (24/27); 8 of 27 were known targets of p21. E2F1 mRNA and protein were increased by NO*, as was E2F1 binding to E2F promoter elements. NO* activated p38 MAPK, stabilizing p21 mRNA (an ARE-containing transcript) and increasing p21 protein; this increased protein binding to CDE/CHR promoter sites of p21 target genes, repressing key G2/M phase genes, and increasing the proportion of cells in G2/M.

Conclusion: NO* coordinates a highly integrated program of cell cycle arrest that regulates a large number of genes, but does not require signaling through cGMP. In humans, antiproliferative effects of NO* may rely substantially on cGMP-independent mechanisms. Stress kinase signaling and alterations in mRNA stability appear to be major pathways by which NO* regulates the transcriptome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1312313PMC
http://dx.doi.org/10.1186/1471-2164-6-151DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
no*
13
effects no*
12
nitric oxide
8
regulation cell
8
u937 cells
8
genes
8
no* bt2camp
8
cycle genes
8
target genes
8

Similar Publications

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

PATL2 mutations affect human oocyte maternal mRNA homeostasis and protein interactions in cell cycle regulation.

Cell Biosci

December 2024

Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.

Results: This study uncovers three novel mutations (c.

View Article and Find Full Text PDF

Background: Recent studies have implicated a role for perioperative medications in determining patient outcomes after surgery for malignant tumours, including relapse and metastasis.

Methods: A combined approach spanned molecular, cellular, and organismal levels, including bioinformatics, immunohistochemical staining of clinical and animal samples, RNA sequencing of glioblastoma multiforme (GBM) cells with Ingenuity Pathway Analysis, lentiviral-mediated gene expression modulation, in vitro cell experiments, and in vivo orthotopic tumour transplantation.

Results: We observed a significant correlation between increased kappa opioid receptor (KOP receptor) expression and better prognosis in patients with glioma.

View Article and Find Full Text PDF

Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification.

Life Sci Alliance

March 2025

https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA

Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA).

View Article and Find Full Text PDF

Background/aim: Kisspeptin has multifaceted roles in both normal and pathological conditions. Although lung cancer is a leading cause of cancer worldwide, the role of kisspeptin in lung cancer remains poorly understood. Thus, this study aimed to investigate the effects of kisspeptin on lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!