Ca2+/Calmodulin-dependent protein kinase (CaM kinase) phosphatase, occurring in the cytoplasm of all tissues, dephosphorylates and thereby deactivates multifunctional CaM kinases, such as CaM kinases I, II and IV. In contrast, CaM kinase phosphatase N has been reported to occur almost exclusively in the brain and to be localized in the nucleus in the transfected COS-7 cells, as examined immunocytochemically with antibodies against the carboxyl-terminal segment of the enzyme, indicating its involvement in the deactivation of CaM kinase IV. Here, we show that the majority of the naturally occurring CaM kinase phosphatase N in the brain exists not in the intact form of the enzyme (83.4 kDa) but in a form (61.1 kDa) in which the carboxyl-terminal segment containing nuclear localization signals is deleted, and that it is present mostly in the cytoplasm but a little in the nucleus throughout the central nervous system, although occurring mostly in the nucleus in some large neurons. Strong immunostaining of the enzyme was also observed at postsynaptic density. These findings suggest that CaM kinase phosphatase N is involved in the regulation of not only CaM kinase IV but also CaM kinases II and I.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2005.03540.xDOI Listing

Publication Analysis

Top Keywords

cam kinase
28
kinase phosphatase
20
carboxyl-terminal segment
12
cam kinases
12
cam
10
kinase
8
kinase cam
8
phosphatase
5
post-translational excision
4
excision carboxyl-terminal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!