Pneumococcal surface protein C (PspC) binds to the complement regulatory protein factor H (FH), which inhibits alternative pathway activation. In the present study, using a mouse model of systemic infection and flow-cytometric analyses, we demonstrated an in vivo interaction between FH and pneumococci and showed differential FH binding during bacteremia. Flow-cytometric analyses of pneumococci harvested after intraperitoneal (ip) challenge demonstrated increased binding of FH, compared with that after intravenous (iv) challenge. Real-time polymerase chain reaction analyses of PspC mRNA showed that, relative to pneumococci grown in vitro, those recovered from the blood of mice 24 h after iv challenge exhibited 23-fold higher mRNA levels; however, after ip challenge, PspC mRNA induction was increased 870-fold. A subsequent increase in PspC expression was detected by flow cytometry using a monoclonal antibody against PspC. Furthermore, pneumococci with FH bound to complement before exposure had increased proliferation, compared with pneumococci not pretreated with FH. These results suggest that the interaction between PspC and FH contributes to pneumococcal virulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/497605 | DOI Listing |
Inflamm Regen
January 2025
Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.
Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Cytopathology, Institute of Oncology, Zaloška Cesta 2, 1000 Ljubljana, Slovenia.
Flow cytometric (FC) immunophenotyping and T-cell receptor (TCR) gene rearrangement studies are essential ancillary methods for the characterisation of T-cell lymphomas. Traditional manual gating and polymerase chain reaction (PCR)-based analyses can be labour-intensive, operator-dependent, and have limitations in terms of sensitivity and specificity. The objective of our study was to investigate the efficacy of the Phenograph and t-SNE algorithms together with an antibody specific for the TCR β-chain constant region 1 (TRBC1) to identify monoclonal T-cell populations.
View Article and Find Full Text PDFMol Cancer
January 2025
Foshan Maternity and Child Healthcare Hospital; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China.
Background: Intratumor-resident bacteria represent an integral component of the tumor microenvironment (TME). Microbial dysbiosis, which refers to an imbalance in the bacterial composition and bacterial metabolic activities, plays an important role in regulating breast cancer development and progression. However, the impact of specific intratumor-resident bacteria on tumor progression and their underlying mechanisms remain elusive.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Kent Ridge, 117456, Singapore.
Detecting alterations in plasmid structures is often performed using conventional molecular biology. However, these methods are laborious and time-consuming for studying the conditions inducing these mutations, which prevent real-time access to cell heterogeneity during bioproduction. In this work, we propose combining both flow cytometry and fluorescence-activated cell sorting, integrated with mechanistic modelling to study conditions that lead to plasmid recombination using a limonene-producing microbial system as a case study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!