Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures.

Clin Infect Dis

Division of Infectious Diseases and Geographic Medicine, Department of Pathology, Stanford University Medical College, Stanford, CA 94305-5250, USA.

Published: December 2005

An extensive blood culture protocol, including prolonged incubation of cultures, for 215 patients believed to have had endocarditis yielded only 3 clinically relevant results. Twenty-four Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella (i.e., HACEK) organisms were recovered from standard 5-day blood cultures during the same time period. Specialized methods and not extended incubation times are recommended for recovery of fastidious agents of septicemia.

Download full-text PDF

Source
http://dx.doi.org/10.1086/497595DOI Listing

Publication Analysis

Top Keywords

prolonged incubation
8
blood cultures
8
incubation extensive
4
extensive subculturing
4
subculturing increase
4
increase recovery
4
recovery clinically
4
clinically microorganisms
4
microorganisms standard
4
standard automated
4

Similar Publications

Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.

View Article and Find Full Text PDF

Stable Antifouling and Antibacterial Coating Based on Assembly of Copper-Phenolic Networks.

ACS Appl Bio Mater

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Biofilm formation on medical devices has become a worldwide issue arising from its resistance to bactericidal agents and presenting challenges to eradicating biofouling adhesion, especially in biological fluids. Metal-phenolic networks have been demonstrated as a versatile and efficient strategy to prevent biofilm formation by endowing medical devices with prolonged antifouling and antibacterial activities in a one-step surface modification. In this study, we report a simple and environmentally friendly method using coordination chemistry between copper ions (Cu) and dopamine-containing copolymer to fabricate metal-phenolic network-based coatings.

View Article and Find Full Text PDF

Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. On the other hand, application of OTOA in PLA-based antibacterial materials is hindered by a lack of knowledge on kinetics of the OTOA release. In this work, the release of glycero-(9,10-trioxolane) trioleate (OTOA) from PLA films with 50% OTOA content was studied during incubation in normal saline solution, and for the first time, the kinetics of OTOA release from PLA film was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!