Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The regulated release of hormones and neurotransmitters is a fundamental process throughout the animal kingdom. The short time scale for the calcium triggering of vesicle fusion in regulated secretion suggests that the calcium sensor synaptotagmin and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) membrane fusion machinery are well ordered before the calcium signal. To gain insight into the organization of the prefusion protein assembly in regulated exocytosis, we undertook a structural/functional study of the vesicular synaptotagmin1 and the plasma membrane SNARE proteins, which copurify from the brain in the absence of calcium. Based on an evolutionary analysis, mutagenesis screens, and a computational protein docking approach, we now provide the first testable description of the supramolecular prefusion assembly. Perturbing the determined synaptotagmin/SNARE-interacting interface in several models of regulated exocytosis altered the secretion of hormones and neurotransmitters. These mutations also disrupted the constitutive synaptotagmin/SNARE link in full agreement with our model. We conclude that the interaction of synaptotagmin with preassembled plasma membrane SNARE proteins, before the action of calcium, can provide a precisely organized "tethering" scaffold that underlies regulated secretion throughout evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1345666 | PMC |
http://dx.doi.org/10.1091/mbc.e05-07-0620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!